Mars Exploration News  
MARSDAILY
NASA's Mars 2020 rover is put to the test
by Staff Writers
Pasadena CA (JPL) Mar 20, 2019

Technicians working Mars 2020's System's Test 1 approach their workstation in the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory in Pasadena, California.

In a little more than seven minutes in the early afternoon of Feb. 18, 2021, NASA's Mars 2020 rover will execute about 27,000 actions and calculations as it speeds through the hazardous transition from the edge of space to Mars' Jezero Crater. While that will be the first time the wheels of the 2,314-pound (1,050-kilogram) rover touch the Red Planet, the vehicle's network of processors, sensors and transmitters will, by then, have successfully simulated touchdown at Jezero many times before.

"We first landed on Jezero Crater on Jan. 23rd," said Heather Bottom, systems engineer for the Mars 2020 mission at the Jet Propulsion Laboratory in Pasadena, California. "And the rover successfully landed again on Mars two days later."

Bottom was the test lead for Systems Test 1, or ST1, the Mars 2020 engineering team's first opportunity to take the major components of the Mars 2020 mission for a test drive. Over two weeks in January, Bottom and 71 other engineers and technicians assigned to the 2020 mission took over the High Bay 1 cleanroom in JPL's Spacecraft Assembly Facility to put the software and electrical systems aboard the mission's cruise, entry capsule, descent stage and rover through their paces.

"ST1 was a massive undertaking," said Bottom. "It was our first chance to exercise the flight software we will fly on 2020 with the actual spacecraft components that will be heading to Mars - and make sure they not only operate as expected, but also interact with each other as expected."

The heritage for Mars 2020's software goes back to the Mars Exploration Rovers (Spirit and Opportunity) and the Curiosity rover that has been exploring Mars' Gale Crater since 2012. But 2020 is a different mission with a different rover, a different set of science instruments and a different destination on Mars. Its software has to be tailored accordingly.

Work began in earnest on the flight software in 2013. It was coded, recoded, analyzed and tested on computer workstations and laptops. Later, the flight software matriculated to spacecraft testbeds where it was exposed to computers, sensors and other electronic components customized to imitate the flight hardware that will launch with the mission in 2020.

"Virtual workstations and testbeds are an important part of the process," said Bottom. "But the tens of thousands of individual components that make up the electronics of this mission are not all going to act, or react, exactly like a testbed. Seeing the flight software and the actual flight hardware working together is the best way to build confidence in our processes. Test like you fly."

Making the Grade
On the day before ST1 began, the High Bay 1 cleanroom was hopping with "bunny suit"-clad engineers and technicians assembling, inspecting and testing the mission's hardware. The next day, Wednesday, Jan. 16, the room was eerily quiet. The majority of workers had been replaced by two technicians there to monitor the flight test hardware.

Lines of electrical cabling - "umbilicals" - were added to provide data and power to the spacecraft's cruise stage, back shell, descent stage and rover chassis, which have yet to be stacked together. The ground to in-flight spacecraft (and in-flight spacecraft to ground) communications were handled by X-band radio transmission, just like they would be during the trip to Mars.

ST1 began with commands to energize the spacecraft's electrical components and set up thermal, power and telecom configurations. While all the spacecraft components remained in the cleanroom, Bottom and her team had them thinking they were sitting on top of an Atlas 541 rocket 190 feet (58 meters) above Launch Complex 41 at Cape Canaveral on July 17, 2020, waiting to be shot into space.

Next, they focused on another part of cruise before testing the landing sequence. Then they did it all over again.

After a successful launch, they time jumped 40 days ahead to simulate deep space cruise. How would the software and hardware interact when they had to perform navigation fixes and trajectory correction maneuvers? And how would they work when simulated events didn't go as planned? The team looked for answers on the operators' computer screens in the test operations room beside the cleanroom.

"From the test operations room, you could look out the windows onto the cleanroom floor and clearly see the flight hardware," said Bottom.

"Nothing was visibly moving, but underneath the outer structure, there were flight computers swapping sides, radios sending and receiving transmissions, fuel valves moving in and out, subsystems being energized and later turned off, and electrical signals being sent to nonexistent pyrotechnic devices. There was a lot going on in there."

On Jan. 30, the Mars 2020 test team was able to close their 1,000-plus page book of procedures for ST1. They went two-for-two on Mars landings. They also launched four times, performed deep space navigation, executed several trajectory correction maneuvers and even tested a few in-flight off-nominal situations.

This first evaluation of flight hardware and software, over a year in the making, had been a thorough success, demonstrating where things excelled and where they could be improved. When these new changes have been investigated on both a virtual workstation and in the testbed, they will have their chance to "fly" in one of the many other systems tests planned for Mars 2020.

"One of the future scenario tests will place the rover inside a thermal chamber and simulate being on the surface. It will step through mission critical activities at some very low Mars surface temperatures," said Bottom. "Both literally and figuratively it will be a very cool test."

The Mars 2020 Project at JPL manages rover development for NASA's Science Mission Directorate. NASA's Launch Services Program, based at the agency's Kennedy Space Center in Florida, is responsible for launch management. Mars 2020 will launch from Cape Canaveral Air Force Station in Florida.


Related Links
Mars 2020
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Trembling Aspen Leaves Could Save Future Mars Rovers
Coventry, UK (SPX) Mar 19, 2019
Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even be a back-up energy supply that could save and extend the life of future Mars rovers. University of Warwick third-year engineering undergraduates have in recent years been set the task of the examining the puzzle of why Aspen leaves quiver in the presence of a slightest breeze. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Returning Astronauts to the Moon: Lockheed Martin Finalizes Full-Scale Cislunar Habitat Prototype

Floating ideas for an airlock near the Moon

Goddard prepares for a new era of human exploration

Lunar water molecules hop as surface temperature increases

MARSDAILY
Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

MARSDAILY
ESA's Hera asteroid mission borrows eyes of NASA's Dawn

Ancient comet impact triggered fires, climate change

Turkish Meteorite Traced to Impact Crater on Vesta

OSIRIS-REx images close in on Bennu's northern hemisphere

MARSDAILY
A Prehistoric Mystery in the Kuiper Belt

Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

MARSDAILY
Scientist sheds light on Titan's mysterious nitrogen atmosphere

Cassini data show Saturn's Rings relatively new

Scientists Finally Know What Time It Is on Saturn

Waves in Saturn's rings give precise measurement of planet's rotation rate

MARSDAILY
Tunas, sharks and ships at sea

Nitrogen dioxide pollution mapped

Space weather mission will venture deep into space

Scientists go to extremes to reveal make-up of Earth's core

MARSDAILY
NASA astronauts Hague, Koch arrive safely at Space Station

Soyuz MS-12 docks at the International Space Station

3 astronauts on Soyuz craft successfully reach ISS

Astronauts on aborted Soyuz launch to blast off again for ISS

MARSDAILY
ALMA observes the formation sites of solar-system-like planets

Neural Networks Predict Planet Mass

Cooking Up Alien Atmospheres on Earth

SETI Institute: Agreement with Unistellar to Develop Citizen Science Network









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.