NASA's InSight will study Mars while standing still by Staff Writers Pasadena CA (JPL) Oct 25, 2018
You don't need wheels to explore Mars. After touching down in November, NASA's InSight spacecraft will spread its solar panels, unfold a robotic arm ... and stay put. Unlike the space agency's rovers, InSight is a lander designed to study an entire planet from just one spot. This sedentary science allows InSight to detect geophysical signals deep below the Martian surface, including marsquakes and heat. Scientists will also be able to track radio signals from the stationary spacecraft, which vary based on the wobble in Mars' rotation. Understanding this wobble could help solve the mystery of whether the planet's core is solid. Here are five things to know about how InSight conducts its science.
1. InSight Can Measure Quakes Anywhere on the Planet SEIS will measure seismic waves from marsquakes and meteorite strikes as they move through Mars. The speed of those waves changes depending on the material they're traveling through, helping scientists deduce what the planet's interior is made of. Seismic waves come in a surprising number of flavors. Some vibrate across a planet's surface, while others ricochet off its center. They also move at different speeds. Seismologists can use each type as a tool to triangulate where and when a seismic event has happened. This means InSight could have landed anywhere on Mars and, without moving, gathered the same kind of science.
2. InSight's Seismometer Needs Peace and Quiet SEIS is sensitive enough to detect vibrations smaller than the width of a hydrogen atom. It will be the first seismometer ever set on the Martian surface, where it will be thousands of times more accurate than seismometers that sat atop the Viking landers. To take advantage of this exquisite sensitivity, engineers have given SEIS a shell: a wind-and-thermal shield that InSight's arm will place over the seismometer. This protective dome presses down when wind blows over it; a Mylar-and-chainmail skirt keeps wind from blowing in. It also gives SEIS a cozy place to hide away from Mars' intense temperature swings, which can create minute changes in the instrument's springs and electronics.
3. InSight Has a Self-Hammering Nail This unique instrument, called HP3 (Heat Flow and Physical Properties Package), holds a spike attached to a long tether. A mechanism inside the spike will hammer it up to 16 feet (5 meters) underground, dragging out the tether, which is embedded with heat sensors. At that depth, it can detect heat trapped inside Mars since the planet first formed. That heat shaped the surface with volcanoes, mountain ranges and valleys. It may even have determined where rivers ran early in Mars' history.
4. InSight Can Land in a Safe Spot InSight's team selected a location on Mars' equator called Elysium Planitia - as flat and boring a spot as any on Mars. That makes landing just a bit easier, as there's less to crash into, fewer rocks to land on and lots of sunlight to power the spacecraft. The fact that InSight doesn't use much power and should have plenty of sunlight at Mars' equator means it can provide lots of data for scientists to study.
5. InSight Can Measure Mars' Wobble Collecting detailed data on this wobble hasn't happened since Mars Pathfinder's three-month mission in 1997 (although the Opportunity rover made a few measurements in 2011 while it remained still, waiting out the winter). Every time a stationary spacecraft sends radio signals from Mars, it can help scientists improve their measurements.
The claw game on Mars: NASA InSight plays to win Pasadena CA (JPL) Oct 19, 2018 If you've ever played the claw machine at an arcade, you know how hard it can be to maneuver the metal "hand" to pick up a prize. Imagine trying to play that game when the claw is on Mars, the objects you're trying to grasp are far more fragile than a stuffed bear and all you have is a stitched-together panorama of the environment you're working in. Oh, and there might be a dust storm. NASA's InSight lander, slated to arrive on Mars Nov. 26, 2018, will be the first mission to use a robotic arm to ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |