Mars Exploration News  
NASA Orbiter Reveals Details Of A Wetter Mars

NASA's Mars Reconnaissance Orbiter has revealed Martian rocks containing a hydrated mineral similar to opal. The rocks are light-toned and appear cream-colored in this false-color image taken by the High Resolution Imaging Science Experiment camera. Images acquired by the orbiter reveal that different layers of rock have different properties and chemistry. The opal minerals are located in distinct beds of rock outside of the large Valles Marineris canyon system and are also found in rocks within the canyon. The presence of opal in these relatively young rocks tells scientists that water, possibly as rivers and small ponds, interacted with the surface as recently as two billion years ago, one billion years later than scientists had expected. The discovery of this new category of minerals spread across large regions of Mars suggests that liquid water played an important role in shaping the planet's surface and possibly hosting life. Image Credit: NASA/JPL-Caltech/Univ. of Arizona
by Staff Writers
Pasadena CA (SPX) Oct 29, 2008
NASA's Mars Reconnaissance Orbiter has observed a new category of minerals spread across large regions of Mars. This discovery suggests that liquid water remained on the planet's surface a billion years later than scientists believed, and it played an important role in shaping the planet's surface and possibly hosting life.

Researchers examining data from the orbiter's Compact Reconnaissance Imaging Spectrometer for Mars have found evidence of hydrated silica, commonly known as opal. The hydrated, or water-containing, mineral deposits are telltale signs of where and when water was present on ancient Mars.

"This is an exciting discovery because it extends the time range for liquid water on Mars, and the places where it might have supported life," said Scott Murchie, the spectrometer's principal investigator at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

"The identification of opaline silica tells us that water may have existed as recently as 2 billion years ago."

Until now, only two major groups of hydrated minerals, phyllosilicates and hydrated sulfates, had been observed by spacecraft orbiting Mars.

Clay-like phyllosilicates formed more than 3.5 billion years ago where igneous rock came into long-term contact with water. During the next several hundred million years, until approximately 3 billion years ago, hydrated sulfates formed from the evaporation of salty and sometimes acidic water.

The newly discovered opaline silicates are the youngest of the three types of hydrated minerals. They formed where liquid water altered materials created by volcanic activity or meteorite impact on the Martian surface. One such location noted by scientists is the large Martian canyon system called Valles Marineris.

"We see numerous outcrops of opal-like minerals, commonly in thin layers extending for very long distances around the rim of Valles Marineris and sometimes within the canyon system itself," said Ralph Milliken of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

Milliken is lead author of an article in the November issue of "Geology" that describes the identification of opaline silica. The study reveals that the minerals, which also were recently found in Gusev Crater by NASA's Mars rover Spirit, are widespread and occur in relatively young terrains.

In some locations, the orbiter's spectrometer observed opaline silica with iron sulfate minerals, either in or around dry river channels. This indicates the acidic water remained on the Martian surface for an extended period of time.

Milliken and his colleagues believe that in these areas, low-temperature acidic water was involved in forming the opal. In areas where there is no clear evidence that the water was acidic, deposits may have formed under a wide range of conditions.

"What's important is that the longer liquid water existed on Mars, the longer the window during which Mars may have supported life," says Milliken. "The opaline silica deposits would be good places to explore to assess the potential for habitability on Mars, especially in these younger terrains."

The spectrometer collects 544 colors, or wavelengths, of reflected sunlight to detect minerals on the surface of Mars. Its highest resolution is about 20 times sharper than any previous look at the planet in near-infrared wavelengths.

NASA's Jet Propulsion Laboratory manages the Mars Reconnaissance Orbiter mission for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft.

The Applied Physics Laboratory led the effort to build the spectrometer and operates the instrument in coordination with an international team of researchers from universities, government and the private sector.

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Mars Reconnaissance Orbiter
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Mars Lander Sees Falling Snow, Soil Data Suggest Liquid Past
Pasadena CA (SPX) Sep 30, 2008
NASA's Phoenix Mars Lander has detected snow falling from Martian clouds. Spacecraft soil experiments also have provided evidence of past interaction between minerals and liquid water, processes that occur on Earth.











  • ESA's Lunar Robotics Challenge
  • Chandrayaan-1 Enters Deep Space
  • NASA Tests Rover Concepts In Arizona
  • Chandrayaan's Orbit Raised

  • US space tourist remembers 'a beautiful ballet'
  • Astronauts To Vote From Space
  • Soyuz Lands In Kazakhstan With Two Russian cosmonauts And Tourist
  • Center To Study Acute Effects Of Space Radiation

  • Nine Mementos Headed To The Ninth Planet
  • Outer Solar System Not So Crowded
  • 1,000 Days On The Road To Pluto
  • NASA Spacecraft Ready To Explore Outer Solar System

  • Titan Is Electric
  • Jet Streams On Giant Planets
  • Studying A Giant Planet
  • Sharpening Up Jupiter

  • Venus Express Searching For Life On Earth
  • How Windy Is It On Venus
  • Measuring The Winds Of Venus
  • Closing In On Venus

  • Giant Cyclones At Saturn's Poles Create A Swirl Of Mystery
  • The Ions And Isotopes Of Enceladus
  • Cassini Plans Doubleheader Flybys Of Saturn's Geyser Moon
  • Calculations Show Saturn's Rings May Be More Massive, Older

  • The Sky Isn't Falling And That's A Problem
  • Sarantel Antenna Featured In New Iridium 9555 Satellite Phone
  • NASA Launches IBEX Mission To Outer Solar System
  • MSV Awarded Patents For Next-Gen Satellite-Terrestrial Comms Network

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement