Mars Exploration News  
Martian Life Would Need A Dose Of Antioxidants

Evidence of life might exist beneath the surface or in the interiors of rocks that are protected from the superoxide ions. What we don't know is how far below the surface we would need to look.

San Diego - August 1, 2000
Intense ultraviolet radiation that pierces Mars' thin atmosphere produces an abundance of oxygen ions, a common free radical, at the Martian surface that destroys organic molecules - - the building blocks of life -- according to researchers at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Scientists have been puzzled since the mid-1970s when NASA's Viking landers failed to find any organic materials, not even traces delivered to Mars by meteorites.

That discovery led scientists to recognize that there were oxidants in the Martian soil capable of destroying organic molecules. It has taken until now for a team to come up with a comprehensive idea of what those oxidizing chemicals are and how they form.

"We simulated the Martian surface environment in our laboratory and found that the combination of ultraviolet radiation, mineral grain surfaces, atmospheric oxygen and extremely dry conditions produce superoxide ions. This is all that is necessary to make the reactive component of soil," said Dr. Albert Yen, a JPL planetary scientist and lead author of the study being published in Science magazine on September 15.

This combination of surface conditions exists on Mars today and the superoxides are generated during daytime exposures to ultraviolet radiation.

"Our research does not address whether life ever formed on Mars, but it does give us more information about where to look for life or evidence of past life," Yen said.

"Evidence of life might exist beneath the surface or in the interiors of rocks that are protected from the superoxide ions. What we don't know is how far below the surface we would need to look."

"Determining how deep that oxidizing layer is on Mars is the most important next step in searching for life there," said Caltech Professor Bruce Murray, a co-author on the study.

The research team plans to study the movement of these oxygen radicals under simulated Martian conditions to estimate how deep they may be distributed. Future experiments to search for subsurface organic molecules could be carried out by penetrators and/or by drilling from a surface lander.

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spirit Heading To 'Home Plate'
Pasadena CA (JPL) Jan 09, 2006
Last week Spirit completed robotic-arm work on "El Dorado." The rover used all three of its spectrometers plus the microscopic imager for readings over the New Year's weekend.











  • NASA Seeks Berth On India's Moon Mission

  • Russian Course Program Will Find If You Have The Right Stuff
  • Russian Deputy PM Backs Private Space Station Project
  • Discovery Set For 100th Shuttle Mission
  • Body Clock Hurts Space Travel Prospects









  • Spacelabs Equipment Passes Rigorous NASA Remote Telemedicine Monitoring Tests
  • SAT Corporation Awarded Subcontract for Telstar 8 Communications Simulator
  • Device Could Make For Faster Internet, Better Communications
  • Constellations Spawn Debris Rings Around Earth

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement