Mars Exploration News  
MARSDAILY
Mars scientists investigate ancient life in Australia
by Staff Writers
Pasadena CA (JPL) Nov 18, 2019

Scientists from NASA's Mars 2020 and ESA's ExoMars projects study stromatolites, the oldest confirmed fossilized lifeforms on Earth, in the Pilbara region of North West Australia. The image was taken on Aug. 19, 2019. See a video presentation of this research here

As any geologist worth his or her salt will tell you, there are rocks, and then there are rocks. Next July, NASA and the European Space Agency (ESA) are launching rovers to Mars that will search for signs of past microbial life, and to find them, the scientists with NASA's Mars 2020 mission and ESA's ExoMars will need to examine different kinds of rocks that lend compelling insights into the environment in which they were made - all from 100 million miles away.

"While we expect to find many significant rocks during both Mars 2020 and ExoMars missions, we also have to leave open the possibility we could find one or more very special rocks, the kind whose discovery would not only speak volumes about the history of Mars but contribute significantly to the discussion of life elsewhere in the universe," said Ken Farley, Mars 2020 project scientist at Caltech in Pasadena.

Guided by Martin Van Kranendonk, director of the Australian Centre for Astrobiology at the University of New South Wales, members of the two missions' science teams went on an expedition to northwestern Australia's Pilbara region to analyze, discuss and debate stromatolites - structures preserved in rock that formed in water on early Earth and contain a fossilized record of ancient microbial life. Among the science teams' stops: a stromatolite cluster in a grouping of rock called the Dresser Formation that contains some of the oldest known fossilized records of life on our world.

"Some 3.48 billion years ago, this area was home to a caldera, or collapsed volcano, filled with hot, bubbling seawater," said Van Kranendonk. "At the same time, this location was also home to structures called microbial mats - visible to the naked eye but composed of microscopic organisms. Today you would know them as simple pond scum, but back then they were the most complex life forms on Earth."

Likely powered by photosynthesis, along with the heat and chemical energy in the caldera, these mats lived at the water's edge, secreting a mucous that would trap grains of sediment swirling around in the water. Over time, sheet after sheet of these microbes trapped sediment on top of previous layers. When the seawater receded and the pond scum dried up and disappeared millennia later, what remained was striking evidence of this co-evolution of geology and biology.

"A stromatolite is quite subtle to the untrained eye," said Van Kranendonk. "But once you know the details, you recognize that these wavy, wrinkly rocks have a structure different from that which can be explained by just geology."

Past Life on Mars?
Of course, the Outback isn't Mars, but what happened in the Dresser Formation a billion years ago and what happened on the Red Planet at roughly the same time share some eerie similarities.

Between 3 billion and 4 billion years ago at the Mars 2020 landing site, Jezero Crater, a river flowed into a body of water the size of Lake Tahoe, depositing delta sediments packed with clay and carbonate minerals. The conditions were ideal for stromatolites to form on the shorelines, which is one key reason the rover team will be touching down there in February 2021. "It's hard to think of a better recipe for life to thrive - and for its record to be preserved - than the one we see at Jezero," said Ken Williford, deputy project scientist for Mars 2020 at JPL.

If stromatolites ever existed in Jezero or at Oxia Planum, the ExoMars landing site, the teams need to know what to look for, hence this trip to the Outback. But that's not the only reason they came.

"I organized this first joint Mars 2020-ExoMars science expedition so scientists from our two great missions could gain a new perspective on these one-of-a-kind stromatolites; a laboratory setting just can't provide the same context," said Mitch Schulte, Mars 2020 program scientist at NASA Headquarters in Washington. "That applies to the experience as a whole, too - the conversations, comparing of notes and planning for future exchanges that was done here in the Pilbara will go a long way to advance Mars science."

Two Missions, Two Rovers
While the two missions both seek to find evidence of past life, each is approaching the challenge in its own way. Touching down about a week after Mars 2020, the ExoMars rover, otherwise known as the Rosalind Franklin, carries a core drill that on two or more occasions will bore almost 7 feet (2 meters) into the Martian crust. The rover will analyze the samples onsite with a sophisticated suite of scientific instruments.

The coring mechanism on NASA's Mars 2020 rover drills shallower holes but is designed to collect more than 40 rock and soil core samples. There will be on-site analysis of rocks at the coring sites, and the samples themselves will be sealed in metal tubes that will ultimately be deposited by the rover at specific sites. Future missions could then retrieve those samples and return them to Earth for the sort of laboratory analysis that just isn't possible on Mars.

"These two Mars missions will be revolutionary because they are complementary," said Teresa Fornaro, a science team member for the Mars Organic Molecule Analyzer instrument aboard ExoMars. "Two different rovers with two different sets of instruments, exploring at the same time two different landing sites. Some of the capabilities of Mars 2020 in characterizing the surface environment could help guide ExoMars on where to drill. Conversely, knowledge of the alteration of possible organics as a function of depth by ExoMars could help Mars 2020 select the most interesting surface samples to collect for future return to Earth."

When the joint Mars 2020-ExoMars science Outback expedition concluded in late August, the science teams went their separate ways. But to those who honed their stromatolite-hunting skills in the Pilbara, the influence of the trip continues.

"What is happening working out here in the field is also happening in the halls of NASA and ESA," said Schulte. "Finding evidence of life on another world, if it ever existed, will require tenacity and a whole lot of brainpower. If there is a stromatolite in the range of the rovers, I think we have a good chance of finding it ... and we'll find it together. This trip will have helped with that."


Related Links
Mars 2020
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
At future Mars landing spot, scientists spy mineral that could preserve signs of past life
Providence RI (SPX) Nov 13, 2019
Next year, NASA plans to launch a new Mars rover to search for signs of ancient life on the Red Planet. A new study shows that the rover's Jezero crater landing site is home to deposits of hydrated silica, a mineral that just happens to be particularly good at preserving biosignatures. "Using a technique we developed that helps us find rare, hard-to-detect mineral phases in data taken from orbiting spacecraft, we found two outcrops of hydrated silica within Jezero crater," said Jesse Tarnas, a Ph. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
India aims for next Moon landing attempt by November 2020

India's 'failed' Moon mission still active, sends 3D images of lunar surface

NASA gains broad international support for Artemis Program at IAC

Lunar IceCube mission to locate, study resources needed for sustained presence on Moon

MARSDAILY
China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

MARSDAILY
The voyage home: Japan's Hayabusa-2 probe to head for Earth

China to meet challenges of exploring asteroid, comet

Apollo astronaut champions Hera for planetary defence

Asteroid Hygiea could be the smallest dwarf planet yet

MARSDAILY
NASA renames faraway ice world 'Arrokoth' after backlash

New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'

Juice cast in gold

SwRI to plan Pluto orbiter mission

MARSDAILY
Numerous polar storms on Saturn analyzed by the UPV/EHU's Planetary Sciences Group

University of Hawaii team unravels origin, chemical makeup of Titan's dunes

Saturn most moon-rich planet in solar system after discovery of 20 new moons

Saturn surpasses Jupiter after the discovery of 20 new moons

MARSDAILY
CloudFerro is contracted by DLR to provide the next stage of CODE-DE

China launches new remote-sensing satellite

Earth's strange and wonderful magnetic field

Simera Sense and Space Inventor to collaborate on offering earth observation solutions

MARSDAILY
UAE's first astronaut urges climate protection on Earth

Final spacewalk preps during biology, physics studies on ISS

Commerce leaders introduce the NASA Authorization Act of 2019

Stand-up scientists use comedy to reach beyond the ivory tower

MARSDAILY
Scientists use 3D climate model to narrow search for habitable exoplanets

Distant worlds under many suns

Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.