Mars once had salt lakes similar to Earth by Staff Writers College Station TX (SPX) Oct 19, 2019
Mars once had salt lakes that are similar to those on Earth and has gone through wet and dry periods, according to an international team of scientists that includes a Texas A and M University College of Geosciences researcher. Marion Nachon, a postdoctoral research associate in the Department of Geology and Geophysics at Texas A and M, and colleagues have had their work published in the current issue of Nature Geoscience. The team examined Mars' geological terrains from Gale Crater, an immense 95-mile-wide rocky basin that is being explored with the NASA Curiosity rover since 2012 as part of the MSL (Mars Science Laboratory) mission. The results show that the lake that was present in Gale Crater over 3 billion years ago underwent a drying episode, potentially linked to the global drying of Mars. Gale Crater formed about 3.6 billion years ago when a meteor hit Mars and created its large impact crater. "Since then, its geological terrains have recorded the history of Mars, and studies have shown Gale Crater reveals signs that liquid water was present over its history, which is a key ingredient of microbial life as we know it," Nachon said. "During these drying periods, salt ponds eventually formed. It is difficult to say exactly how large these ponds were, but the lake in Gale Crater was present for long periods of time - from at least hundreds of years to perhaps tens of thousands of years," Nachon said.
So what happened to these salt lakes? "With an atmosphere becoming thinner, the pressure at the surface became lesser, and the conditions for liquid water to be stable at the surface were not fulfilled anymore," Nachon said. "So liquid water became unsustainable and evaporated." The salt ponds on Mars are believed to be similar to some found on Earth, especially those in a region called Altiplano, which is near the Bolivia-Peru border. Nachon said the Altiplano is an arid, high-altitude plateau where rivers and streams from mountain ranges "do not flow to the sea but lead to closed basins, similar to what used to happen at Gale Crater on Mars," she said. "This hydrology creates lakes with water levels heavily influenced by climate. During the arid periods Altiplano lakes become shallow due to evaporation, and some even dry up entirely. The fact that the Atliplano is mostly vegetation free makes the region look even more like Mars," she said." Nachon added that the study shows that the ancient lake in Gale Crater underwent at least one episode of drying before "recovering." It's also possible that the lake was segmented into separate ponds, where some of the ponds could have undergone more evaporation. Because up to now only one location along the rover's path shows such a drying history, Nachon said it might give clues about how many drying episodes the lake underwent before Mars's climate became as dry as it is currently. "It could indicate that Mars's climate 'dried out' over the long term, on a way that still allowed for the cyclical presence of a lake," Nachon said. "These results indicate a past Mars climate that fluctuated between wetter and drier periods. They also tell us about the types of chemical elements (in this case sulphur, a key ingredient for life) that were available in the liquid water present at the surface at the time, and about the type of environmental fluctuations Mars life would have had to cope with, if it ever existed."
Global analysis of submarine canyons may shed light on Martian landscapes Stanford CA (SPX) Oct 10, 2019 Submarine canyons are a final frontier on planet Earth. There are thousands of these breathtaking geological features hidden within the depths of the ocean - yet scientists have more high-resolution imagery of the surface of Mars than of Earth's ocean floor. In an effort to shed light on these mysterious underwater features, Stanford researchers analyzed a collection of global images from an online repository of data from the ocean floor. They found that submarine canyons, which had been believed ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |