. Mars Exploration News .




.
MARSDAILY
Mars Rover Carries Device for Underground Scouting
by Staff Writers
Pasadena CA (JPL) Oct 21, 2011

A Russian-built, neutron-shooting instrument on the Curiosity rover of NASA's Mars Science Laboratory mission will check for water-bearing minerals in the ground beneath the rover. Image Credit: NASA/JPL-Caltech. For a larger version of this image please go here.

An instrument on NASA's Mars rover Curiosity can check for any water that might be bound into shallow underground minerals along the rover's path.

"If we conclude that there is something unusual in the subsurface at a particular spot, we could suggest more analysis of the spot using the capabilities of other instruments," said this instrument's principal investigator, Igor Mitrofanov of the Space Research Institute, Russia.

The Mars Science Laboratory mission will use 10 instruments on Curiosity to investigate whether the area selected for the mission has ever offered environmental conditions favorable for life and favorable for preserving evidence about life.

"The strength of Mars Science Laboratory is the combination of all the instruments together," Mitrofanov added.

The Dynamic Albedo of Neutrons instrument, or DAN, will scout for underground clues to a depth of about 20 inches (50 centimeters).

The Russian Federal Space Agency contributed it to NASA as part of a broad collaboration between the United States and Russia in the exploration of space.

Sergey Saveliev, deputy head of the Russian Federal Space Agency, emphasized that the cooperation on this project serves as a continuation of the joint activities associated with the study of Mars to enhance the scientific return to the international community in the areas of Mars exploration and Mars knowledge.

The accommodation and integration of the Russian DAN in the U.S. Mars Science Laboratory flight and mission systems give evidence of strengthening cooperation between the two countries in space endeavors.

DAN will bring to the surface of Mars an enhancement of nuclear technology that has already detected Martian water from orbit. "Albedo" in the instrument's name means reflectance - in this case, how original high-energy neutrons injected into the ground bounce off atomic nuclei in the ground.

Neutrons that collide with hydrogen atoms bounce off with a characteristic decrease in energy, similar to how one billiard ball slows after colliding with another.

By measuring the energies of the neutrons leaking from the ground, DAN can detect the fraction that was slowed in these collisions, and therefore the amount of hydrogen.

Oil prospectors use this technology in instruments lowered down exploration holes to detect the hydrogen in petroleum. Space explorers have adapted it for missions to the moon and Mars, where most hydrogen is in water ice or in water-derived hydroxyl ions.

Mitrofanov is the principal investigator for a Russian instrument on NASA's Mars Odyssey orbiter, the high-energy neutron detector (HEND), which measures high energy of neutrons coming from Mars. In 2002, it and companion instruments on Odyssey detected hydrogen interpreted as abundant underground water ice close to the surface at high latitudes. That discovery led to NASA's Phoenix Mars Lander going to far northern Mars in 2008 and confirming the presence of water ice.

"You can think of DAN as a reconnaissance instrument," Mitrofanov said. Just as Phoenix investigated what Odyssey detected, Curiosity can use various tools to investigate what DAN detects. The rover has a soil scoop and can also dig with its wheels. Its robotic arm can put samples into instruments inside the rover for thorough analyses of ingredients. Rock formations that Curiosity's cameras view at the surface can be traced underground with DAN, enhancing the ability of scientists to understand the geology.

The neutron detectors on Odyssey rely on galactic cosmic rays hitting Mars as a source of neutrons. DAN can work in a passive mode relying on cosmic rays, but it also has its own pulsing neutron generator for an active mode of shooting high-energy neutrons into the ground. In active mode, it is sensitive enough to detect water content as low as one-tenth of one percent in the ground beneath the rover.

The neutron generator is mounted on Curiosity's right hip. A module with two neutron detectors is mounted on the left hip. With pulses lasting about one microsecond and repeated as frequently as 10 times per second, key measurements by the detectors are the flux rate and delay time of moderated neutrons with different energy levels returning from the ground.

The generator will be able to emit a total of about 10 million pulses during the mission, with about 10 million neutrons at each pulse.

"We have a fixed number of about 10 million shots, so one major challenge is to determine our strategy for how we will use them," said Maxim Litvak, leading scientist of the DAN investigation from the Space Research Institute.

Operational planning anticipates using DAN during short pauses in drives and while the rover is parked. It will check for any changes or trends in subsurface hydrogen content, from place to place along the traverse.

Because there is a low possibility for underground water ice at Curiosity's Gale crater landing site, the most likely form of hydrogen in the ground of the landing area is hydrated minerals.

These are minerals with water molecules or hydroxyl ions bound into the crystalline structure of the mineral. They can tenaciously retain water from a wetter past when all free water has gone.

"We want a better understanding of where the water has gone," said Alberto Behar, DAN investigation scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "DAN fits right into the follow-the-water strategy for studying Mars."

Mars Science Laboratory Project Scientist John Grotzinger of the California Institute of Technology in Pasadena said, "DAN will provide the ability to detect hydrated minerals or water ice in the shallow subsurface, which provides immediate clues as to how the geology of the subsurface might guide exploration of the surface.

In addition, DAN can tell us how the shallow subsurface may differ from what the rover sees at the surface. None of our other instruments have the ability to do this.

DAN measurements will tell us about the habitability potential of subsurface rocks and soils - whether they contain water - and as we drive along, DAN may help us understand what kinds of rocks are under the soils we drive across."

Information from DAN will also provide a ground-truth calibration for the measurements that the gamma-ray and neutron detectors on Odyssey have made and continue to make, all around the planet, enhancing the value of that global data set.

The team leader of Odyssey's gamma-ray spectrometer suite, William Boynton of the University of Arizona in Tucson, is a co-investigator on the DAN investigation, with the major responsibility to provide DAN data products to NASA's Planetary Data System for usage by scientists everywhere.

Besides heading the team that developed and will operate DAN, Mitrofanov is the principal investigator for a passive neutron-detector instrument to check for hydrated minerals on Mars' moon Phobos as part of the Phobos Soil Return mission that Russia plans to launch in November 2011. "Measurements by DAN on the Mars surface will be useful for the interpretation of Phobos data," he said.

The DAN instrument was developed by the Space Research Institute, Moscow, in close cooperation with the N. L. Dukhov All-Russia Research Institute of Automatics, Moscow, and the Joint Institute of Nuclear Research, Dubna. A Russian-language website is available here.

Related Links
Mars Science Laboratory
Mars News and Information at MarsDaily.com
Lunar Dreams and more




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



MARSDAILY
Mars Landing-Site Specialist
Pasadena CA (JPL) Oct 19, 2011
Gale crater has been sitting just below the equator of Mars, minding its own business, for at least three and half billion years. But in August 2012, a capsule is going to come screaming out of the sky, then break its fall by popping a parachute and engaging rocket thrusters. After that, the "sky crane" inside the capsule will activate to lower the subcompact-car-sized Curiosity rover on t ... read more


MARSDAILY
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

MARSDAILY
Boosters Gave Fiery Muscle to Shuttle Launches

NASA Uses MicroStrain Sensors to Monitor Vibroacoustic Shock During Shuttle Launches

Tracking infinity and beyond

Teams Practice Lifting Shuttles at Airports

MARSDAILY
Russian Space Agency names next crew to ISS

ISS orbit readjusted by 3 km

Expedition 30 to ISS could be launched on Dec 21

ISS could be used for satellite assembly until 2028

MARSDAILY
ESA finds that Venus has an ozone layer too

Tenuous ozone layer discovered in Venus' atmosphere

Venus Weather Not Boring After All

Japan test fires Venus probe engine

MARSDAILY
Latest Cassini Images of Enceladus on View

Orion's Belt Lights Up Cassini's View of Enceladus

The Hazy History of Titan's Air

Enceladus weather: Snow flurries and perfect powder for skiing

MARSDAILY
Better use of Global Geospatial Information for Solving Development Challenges

NASA postpones climate satellite launch to Oct 28

NASA Readies New Type of Earth-Observing Satellite for Launch

NASA, Japan Release Improved Topographic Map of Earth

MARSDAILY
Is Your Space Elevator Going Up

Space tourism gaining momentum

NASA Veteran Alan Stern to Lead Florida Space Institute

Astrotech Subsidiary Awarded Task Order for NASA Mission

MARSDAILY
UH Astronomer Finds Planet in the Process of Forming

Nearby planet-forming disk holds water for thousands of oceans

Herschel discovers tip of cosmic iceberg around nearby young star

Herschel detects abundant water in planet-forming disc


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement