Mars Express views moons set against Saturn's rings by Staff Writers Paris (ESA) Mar 02, 2018
New images and video from ESA's Mars Express show Phobos and Deimos drifting in front of Saturn and background stars, revealing more about the positioning and surfaces of the Red Planet's mysterious moons. Mars' two small moons are intriguing objects. While we know something of their size, appearance and position thanks to spacecraft such as ESA's Mars Express, much remains unknown. How and where did they form? What are they made of? What exactly is on their surfaces - and could we send a lander to find out? Mars Express has been studying Mars and its moons for many years. The satellite recently observed both Phobos, Mars' innermost and largest moon at up to 26 km in diameter, and Deimos, Phobos' smaller sibling at 6.2 km in diameter, to produce this new video and series of images. The video combines 30 images as individual frames and shows Phobos passing through the frame with the gas giant planet Saturn, which sits roughly a billion kilometres away, visible as a small ringed dot in the background.
Precise positioning In particular, its path takes it closer to Phobos than any other spacecraft, and allows it to periodically observe the moon close up from within 150 km - in the summer of 2017, it came as close as 115 km. The images of Phobos and Saturn comprising the video were taken on 26 November 2016 by the High Resolution Stereo Camera. Mars Express was travelling at about 3 km/s when it obtained these views, highlighting the importance of knowing Phobos' exact position: the spacecraft had just seconds to image the rocky body as it passed by. Scientists repeatedly refine our knowledge of the moons' positioning in the sky and ensure it is up-to-date by observing each moon against background reference stars and other Solar System bodies. These calculated positions are incredibly precise, and can be accurate to just a couple of kilometres.
Studying the surface The frames of Phobos' surface were taken during close flybys, and show the bumpy, irregular and dimpled surface in detail. Phobos has one of the largest impact craters relative to body size in the Solar System: Stickney crater's 9 km diameter is around a third of the moon's diameter. It is visible as the largest crater in these frames. The same side of the moon always faces the planet, which means multiple flybys are needed to build up a full map of its surface. Deimos is visible as an irregular and partially shadowed body in the foreground of one of the new Mars Express images, with the delicate rings of Saturn just about visible encircling the small dot in the background. Deimos is significantly further away from Mars than its bigger sibling: while Phobos sits at just 6000 km from the surface, Deimos orbits at nearly 23 500 km. For comparison, our own satellite is around 16 times further from Earth than Deimos is from Mars.
Future missions to Mars Phobos in particular has been considered for a possible landing and sample-return mission. Owing to its nearness to Mars and one side always facing its parent, the moon could also be a possible location for a more permanent observation post. This would enable long-term monitoring and study of the martian surface and atmosphere, and communications relay for other spacecraft. Understanding more about the positioning, surface, composition and terrain of both Phobos and Deimos from Mars Express observations is important for preparing for future missions.
Crater Neukum named after Mars Express founder Paris (ESA) Jan 19, 2018 A fascinating martian crater has been chosen to honour the German physicist and planetary scientist, Gerhard Neukum, one of the founders of ESA's Mars Express mission. The International Astronomical Union named the 102 km-wide crater in the Noachis Terra region "Neukum" in September last year after the camera's leader, who died in 2014. Professor Neukum inspired and led the development of the high-resolution stereo camera on Mars Express, which helped to establish the regional geology and topograp ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |