Mars Exploration News  
Major Milestone For Detecting Life On Mars

This image shows Dr Steele (foreground) and Dr Maule undertaking genetic (PCR) and Microarray analysis at Jotun springs Svalbard. The long-term aim of the project is to fully characterize the geology and biology of the Bockfjorden area, to understand the role of biology in the formation and weathering of carbonate deposits that are the only known terrestrial analogue to those found in Martian meteorites.

Washington DC (SPX) Sep 09, 2004
"To detect life on Mars, we have to devise instruments to recognize it and design them in such a way to get them to the Red Planet most efficiently," said Dr. Andrew Steele of the Carnegie Institution's Geophysical Laboratory, a member of an international team* designing devices and techniques to find life on Mars.

"We've passed a major milestone. We successfully tested an integrated Mars life-detection strategy for the first time and showed that if life on Mars resembles life on Earth at all, we'll be able to find even a single-cell," he remarked.

Steele is part of the interdisciplinary, international Arctic Mars Analogue Svalbard Expedition (AMASE) team, which is creating a sampling and analysis strategy that could be used for future Mars missions where real-time decision-making on the planet surface will be needed to search for signs of life.

Their two-stage strategy involves an initial analysis of the surface to find good target sites and then subsequent collection and analysis protocols to study the samples.

Because its geology is much like Mars, this year's AMASE team just completed a two-week fieldwork expedition in the challenging environment of Bockfjorden on the Norwegian island of Svalbard, which at close to 80o N has the world's northern-most hot springs above sea level.

The AMASE team, led by Dr. Hans Amundsen of Physics of Geological Processes (PGP), University of Oslo, Norway, deployed a suite of life-detection instruments in the frigid Arctic environment, including two spectroscopic instruments deployed by Dr. Pamela Conrad (of JPL and a Carnegie visiting investigator), and Dr. Arthur Lane (of JPL).

The instruments are highly sensitive to certain organic and mineralogical markers, or fingerprints, and have the capacity to identify local "hot spots," which are likely to be good targets for finding life.

These instruments were tested on hot-spring deposited carbonate terraces containing rock-dwelling (endolithic) bacteria, and within lava conduits on the Sverrefjell volcano. This volcano is currently the nearest terrestrial analogue to the processes that produced features (Carbonate rosettes) that have been found in the Martian meteorite ALH84001.

The Carnegie team** led by Dr. Steele, deployed a suite of specially adapted off-the-shelf instruments to rapidly detect and characterize low levels of microbiota. The results of the tests can be used for independent validation, and to cross check among the instruments for greater information than any instrument can yield on its own.

Field analysis also allows real-time understanding of the environment, thus permitting the scientists to gather pertinent samples and test hypothesis with minimal sample disturbance.

The suite of instruments included standard genetic techniques to identify and characterize bacterial populations (Polymerase Chain Reaction or PCR); a highly sensitive instrument to detect cell wall components (a PTS unit, which was developed by Charles River, and Norm Wainwright of MBL); an instrument to measure cellular activity by analyzing the flux of the energy-storing molecule ATP; and most significantly, protein microarrays.

Protein microarrays are capable of testing for the presence of many hundreds or even thousands of molecules simultaneously. These molecules are not limited to large proteins or cells--smaller molecules i.e., amino acids and nucleotides, the building blocks of life on Earth, can also be found.

The Carnegie team has pioneered the use of this technology, principally for life-detection for Mars missions, and has recently been advocating its use in astronaut health and environmental monitoring for long-duration human space flight.

"This expedition marks the first time these arrays have been used in the field," commented Dr. Jake Maule of Carnegie, who was responsible for this aspect of the research. Initial results indicate that the team was able to maintain sterile conditions and that the positive results from the protein arrays correlate with PCR, PTS and ATP analysis, as well as the spectroscopic techniques deployed by JPL.

Samples are currently being tested further in the Carnegie labs to verify the field data, and additional expeditions are planned to refine the strategy, technology, and remote operation over the next three years.

The long-term aim of the project is to fully characterize the geology and biology of the Bockfjorden area, to understand the role of biology in the formation and weathering of carbonate deposits that are the only known terrestrial analogue to those found in Martian meteorites. This project will also allow verification of sample acquisition and analysis in simulations at Svalbard, and future missions to Mars and Europa.

Community
Email This Article
Comment On This Article

Related Links
Carnegie Institution
Mars Rovers at JPL
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spirit Heading To 'Home Plate'
Pasadena CA (JPL) Jan 09, 2006
Last week Spirit completed robotic-arm work on "El Dorado." The rover used all three of its spectrometers plus the microscopic imager for readings over the New Year's weekend.









  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • Apollo's Lunar Leftovers
  • New Moon Shot Not So Costly
  • Armstrong Reflects On A New Visions For Space Exploration
  • Sunny lunar mountain good site for base

  • New Research Could Lead To Less Noise For Airplane Takeoffs, Landings
  • Space Plan Takes A Tiny Step
  • Northrop Grumman To Help NASA Define Space Exploration Architecture
  • Swedish Space Corporation Negotiates Strategic Investment In Orbital Recovery

  • SWAP To Determine Where The Sun And Ice Worlds Meet
  • Hubble Fails To Spot Suspected Sedna Moon
  • Life Beneath The Ice In The Outer Solar System?
  • Gravity Rules: The Nature of Planethood

  • Scientists Discover Ganymede Has A Lumpy Interior
  • Link Discovered Between Earth's Ocean Currents And Jupiter's Bands
  • Researchers Show Io Vaporizing Rock Gases Into Atmosphere



  • Atmosphere Detail In Infrared
  • Phoebe In 3-D
  • Probing Different Depths
  • Cassini Reveals Saturn's Cool Rings

  • UK Scientist Gambles On Gravitational Waves
  • Scientists Bring Quantum Optics To A Microchip
  • Glass Semiconductor Softens With Low-Power Laser, Then Re-Hardens
  • NASA Gravity Probe B Mission Ready To Test Einstein's Theory

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement