Subscribe free to our newsletters via your
. Mars Exploration News .




MARSDAILY
Lichen on Mars
by Jeremy Hsu for Astrobiology Magazine
Moffett Field CA (SPX) Jan 19, 2014


Lichen P. chlorophanum on S-MRS Mars-analog substrate. Credit: German Aerospace Center's Institute of Planetary Research.

Humans cannot hope to survive life on Mars without plenty of protection from the surface radiation, freezing night temperatures and dust storms on the red planet. So they could be excused for marveling at humble Antarctic lichen that has shown itself capable of going beyond survival and adapting to life in simulated Martian conditions.

The mere feat of surviving temperatures as low as -51 degrees C and enduring a radiation bombardment during a 34-day experiment might seem like an accomplishment by itself. But the lichen, a symbiotic mass of fungi and algae, also proved it could adapt physiologically to living a normal life in such harsh Martian conditions - as long as the lichen lived under "protected" conditions shielded from much of the radiation within "micro-niches" such as cracks in the Martian soil or rocks.

"There were no studies on adaptation to Martian conditions before," said Jean-Pierre de Vera, a scientist at the German Aerospace Center's Institute of Planetary Research in Berlin, Germany. "Adaptation is very important to be investigated, because it tells you more about the interactions of life in relation to its environment."

Previous Mars simulation experiments focused on simply measuring the survival of organisms at the end of a given time period. By contrast, de Vera and his group of German and U.S. colleagues measured the lichen's activities throughout the experiment that was detailed in the Sept. issue of the journal Planetary and Space Science. They wanted to see whether the lichen had continued its normal activities rather than simply clinging to life in a dormant state.

Two groups of lichen samples were placed inside a Mars simulation chamber about the size of a big pressure cooker, which itself sat within a fridge about the size of an armoire.

That allowed researchers to simulate almost everything about Martian conditions such as atmospheric chemistry, pressure, temperatures, humidity and solar radiation - the lone exceptions being Martian gravity and the added contribution of galactic radiation.

One of the lichen samples in the Mars chamber was exposed to the full brunt of radiation expected on the Martian surface, while the second set of samples received a radiation dose almost 24 times lower to simulate life in the "protected" condition. A third group of lichen samples sat outside the chamber as a control.

Both lichen sample groups survived their month-long period under Martian conditions. But the heavier dose of radiation from a Xenon lamp simulating the surface radiation conditions kept the unprotected sample group from doing much beyond clinging to survival.

Only the "protected" lichen carried on normal activities such as using photosynthesis to turn sunlight into chemical energy for itself. The protected lichen recovered quickly after an initial "shock" period by adapting well enough to steadily ramp up its photosynthetic activities all the way until the end of the experiment.

"We have shown the first time, that in particular photosynthesis is possible in micro-niches on the surface of Mars," de Vera explained.

The lichen chosen for the experiment, called P. chlorophanum, has proven itself a survival champion even before the Mars simulation. Researchers removed lichen samples for testing from its home atop the rocky Black Ridge in Antarctica's North Victoria Land - a frozen, dry landscape not unlike that of many places on Mars.

Similar lichens have shown they can survive exposure to the vacuum of space as well as space radiation. The past experiments conducted by the European Space Agency aboard Russian FOTON satellites and the International Space Station included de Vera as a co-investigator.

The latest Mars simulation experiment did not try to simulate the Martian dust storms that can blanket the entire planet for a month. But de Vera points out that lichen can survive in a resting state for thousands of years on Earth while covered with dust, snow or ice.

Lichen don't exist alone as possible Earth survivors on Mars. Other studies conducted by de Vera have suggested that methane-producing bacteria, known as methanogens, could also manage a Martian existence.

"There are important indices that Earth life can survive, to be metabolically active and adapt physiologically to live on Mars during the time periods which have been investigated," de Vera said.

The experiment's results have huge implications for ongoing robotic missions searching for evidence of life on Mars.

First, they confirm that such missions would do well to focus on searching for possible Martian life within the "micro-niche" environments beneath the soil or within rocks protected from surface radiation.

Second, they lend hope to the idea that Martian life - if at all similar to Earth life - could have indeed survived up until today.

The lichen's remarkable adaptation to Martian conditions suggests a third, equally important lesson - it justifies the ongoing caution of NASA and other space agencies in ensuring that Earth organisms don't accidentally hitchhike a ride to Mars.

Such planetary protection measures seem likely to continue until the possible day that humanity decides to colonize Mars and perhaps change the planet's landscape in the process.

.


Related Links
Astrobiology Magazine
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
The Tough Task of Finding Fossils While Wearing a Spacesuit
Moffett Field CA (SPX) Dec 13, 2013
Someday, human explorers might momentously discover fossils on Mars, proving that the Red Planet once supported extraterrestrial life. An interplanetary expedition of this sort will have overcome major obstacles, such as spacecraft design and the rigors of a many-month voyage. Yet a more subtle challenge to this hypothetical mission's success must, too, be addressed: astronauts will have t ... read more


MARSDAILY
NASA Seeks Partnership Opportunities For Commercial Lunar Landers

Chang'e-3 probe sets out on new missions

China's lunar probe observes stars, explores moon

China's moon rover performs first lunar probe

MARSDAILY
Official: China's space policy open to world

China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

MARSDAILY
Cygnus Work Under Way, Normal Station Operations Continue

Spaceflight, Nanoracks Partnership Launch CubeSat Customers Towards Historic ISS Deployment

Orbital's cargo ship arrives at space station

Obama Administration Extends ISS Until at Least 2024

MARSDAILY
Countdown to Pluto

A Busy Year Begins for New Horizons

The Sounds of New Horizons

On the Path to Pluto, 5 AU and Closing

MARSDAILY
Clay-Like Minerals Found on Icy Crust of Europa

Cassini Spacecraft Obtains Best Views of Saturn Hexagon

Model Suggests Ocean Currents Shape Europa's Icy Shell in Ways Critical for Potential Habitats

The Bright Vortex Off Saturn Way

MARSDAILY
China's pollution seen from space

Charles River Analytics Develops Satellite Image Processing System for NASA

Earth may be heaver than thought due to invisible belt of dark matter

More BARREL Balloons Take to the Skies

MARSDAILY
NASA Tests Orion Spacecraft Parachute Jettison over Arizona

Working Together to Build Tomorrow's STEM Workforce

US Congress Rejects White House Cuts to Planetary Exploration

Commercial Spaceflight Federation Applauds Passage of Bill Providing Funding for Commercial Programs

MARSDAILY
First planet found around solar twin in star cluster

NASA's Kepler Provides Insights on Enigmatic Planets

Powerful Planet Finder Turns Its Eye to the Sky

New kind of planet or failed star? Astrophysicists discover category-defying celestial object




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement