Mars Exploration News  
Lego Biology

Concept artwork shows the Active Thermal Probe (Mars Cryobot) melting down through the northern ice cap on Mars. Credit: NASA JPL

Moffett Field CA (SPX) Apr 07, 2005
Chris McKay, a planetary scientist at the Ames Research Center, has long been investigating the coldest and driest places on Earth. These harsh environments - and the ability of life to adapt there - could point the way to finding life on Mars.

McKay presented this lecture, entitled "Drilling in Permafrost on Mars to Search for a Second Genesis of Life," at a NASA Astrobiology Institute Director's Seminar on November 29, 2004.

In this part of his lecture, McKay defines one of the most interesting topics to astrobiology: how would one know an organic relic when it appears?

How would we decide if any relic organics were ever alive? We know the solar system is full of organic material - lots of gooey brown stuff - but it was never alive. If it is like us, we can put it in a PCR and amplify the DNA. But if it is alien, we may not be able to detect DNA.

Here we need some standard methods to detect alien life. The first standard method is to use a tricorder, of course. The second method is just, "We'll know it when we see it."

Neither of these is going to work very well. We don't have any tricorders, obviously, and we don't have any guesses as to how one might work.

I have a suggestion, which I call the LEGO principle. Biology is built from a small number of components, just like LEGOS.

Biology is going to pick a few common building blocks - some amino acids, sugars, etc. - but not the whole spectrum of available biomolecules.

Different life forms could have a different LEGO kits. As a kid, I used Lincoln Logs. You could build anything that you could with LEGOS, but you couldn't mix the two kits.

They won't work together, but they can each be used to build equivalent construction projects.

Will alien life be that different? At the very least, when we go to Mars, we're not going to be surprised if life depends on carbon and water.

At a higher level, we are also okay. Darwinian evolution is going to apply. Big fish are going to eat little fish. There will be photosynthetic organisms capable of using sunlight.

So at the ecological level, life will be similar. At the chemical level, it will be similar. These will converge. It is the middle level, the level of the biomolecules, where life might be different. At DNA, at ATP, etc., it might diverge.

To test the LEGO principle, we plot distributions of the types of molecules. If non-organic, for instance, we will see equal mixtures of right- and left-handed biomolecules.

But if the distribution is biological, it will be unusual. It will be a series of delta-functions, spikes of right- and left-handed molecular types.

So in principle, if we could get a complete molecular picture from the subsurface, we should be able to see this biological signature. Even if martian life is different from Earth's, it still may have a biological distribution.

We may not know now how to do this analysis, but if you had a sample in the lab, you would probably do a gas chromatography/mass spectrometer study. It is not entirely satisfactory, because GCMS is destructive.

Think of it as characterizing a building by blowing it up, rather than going into it.

What you would rather do is not just see structures, but also functions.

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spirit Heading To 'Home Plate'
Pasadena CA (JPL) Jan 09, 2006
Last week Spirit completed robotic-arm work on "El Dorado." The rover used all three of its spectrometers plus the microscopic imager for readings over the New Year's weekend.









  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • Chandrayaan-I: ISRO Selects American Geologist To Map Moon
  • First "Private" Lunar Mission Succeeded Despite NASA Roadblocks
  • Feature: 'Apollo' Program Lives On
  • ESA Gives Go-Ahead To Cooperation With Indian Lunar Mission

  • Space Watch: How Politics Drives NASA
  • Northrop Grumman, Boeing Announce Companies Supporting CEV Team
  • Wyle Joins "All-Star" Team To Propose New Crew Exploration Vehicle
  • Industry Panel Urges Space Shuttle Fly-Out Plan, Space Station Integration

  • Case Of Sedna's Missing Moon Solved
  • Pluto's Horizon Gets Page One Treatment At NASA.gov
  • NASA Awards Contract For Kepler Mission Photometer
  • Pluto At 75: A Uniquely American Anniversary

  • Jupiter: A Cloudy Mirror For The Sun?
  • Chandra Probes High-Voltage Auroras On Jupiter
  • Space Scientist Proposes New Model For Jupiter's Core
  • The Moon Eclipses Jupiter



  • New Titan Territory
  • On Ammonia And Astrobiology
  • Cassini's T4 Flyby
  • Janus: God Of Beginnings

  • Timing Nature's Fastest Optical Shutter
  • Purdue Engineers Use 'Shaped' Laser Pulses In 'Ultra-Wideband' Research
  • Maxwell Single Board Computers Selecteed For Next-Gen Weather Satellites
  • New Miniaturised Chip Dramatically Reduces Time Taken For DNA Analysis

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement