Iron-Loving Bacteria A Model For Mars Life by Elizabeth Howell for Astrobiology Magazine Moffett Field CA (SPX) Nov 09, 2016
Single-celled microbes are considered a living example of the kind of life that might exist elsewhere in the Universe, as they are able to survive some of the extreme conditions that exist on other worlds. New research on the bacterium Tepidibacillus decaturensis shows that it could be a model organism for what might live on Mars, should any creature inhabit the Red Planet. This microorganism, found in water more than a mile underground in the Illinois Basin in a formation known as Mount Simon Sandstone, has been shown to be moderately tolerant of heat and salt and able to persist in an anoxic environment. Mars itself is believed to harbor similarly briny surface water without the presence of oxygen. A paper based on this research, entitled "Tepidibacillus decaturensis sp. nov.: a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from a depth of 1.7 km in the Illinois Basin, USA," was published in the International Journal of Systematic and Evolutionary Microbiology. The research was led by Yiran Dong, a research scientist at the Carl R. Woese Institute of Genomic Biology, Robert Sanford, a geomicrobiologist and research associate professor at the University of Illinois, Urbana-Champaign, and Bruce W. Fouke, a professor at the University of Illinois, Urbana-Champaign and was co-funded by the NASA Astrobiology Institute and the National Energy Technology Laboratory.
Drilling for CO2 sequestration The research team participated in two drill sessions that were completed on the grounds of the ADM facility in Decatur, Illinois. Both wells are within 1,000 feet of one another and clean deep, subsurface groundwater was collected at a variety of depths.The target lithology of the Mount Simon sandstone in this central portion of the Illinois Basin ranges from 1.5 kilometers (0.93 miles) to 2.2 kilometers (1.4 miles) in burial depth. This habitat also happens to have iron oxide minerals coating the sandstone grains, which is also true of much of the surface of Mars. "There have been some iron-reducers [bacteria] found at deep subsurface environments," Sanford said. "These organisms have respiratory functions for reducing iron; they are reducing iron like we use oxygen. They use ferric iron to breathe." The bacterium they were studying, however, is a fermentative organism. Another example of this kind of organism is yeast, a fungus that converts sugar to alcohol through enzymes. Tepidibacillus decaturensis does not use iron to breathe, but it uses iron to sustain its metabolism in a very similar fashion to how yeast produce ethanol to sustain theirs.
Further research The combination of these two iron-reducing bacteria will allow the scientists to conduct comparative studies of their metabolisms and ecology, permitting them to further explore these novel metal-reducing mechanisms. Two iron-dependent organisms in a similar environment provide valuable comparisons to understand how life behaves in these deep, hostile environments. In previous work published in the journal Genome Announcements earlier in 2016, The team presented the first sequenced genome of Tepidibacillus decaturensis. They found nearly 3,000 protein-coding genes and 52 transfer RNA (tRNA) genes; tRNA is used to decode messenger RNA sequences into proteins. "We are trying to see whether there are some new [gene] features to set up experiments to test them, and thus explore for the first time the deep evolutionary history of these organisms on Earth and potentially Mars," Dong said of the ongoing work.
Related Links Astrobiology Magazine Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |