InSight's "Mole" Starts Hammering into the Martian Soil by Staff Writers Bonn, Germany (SPX) Mar 01, 2019
On 28 February 2019, the German Aerospace Center (Deutsches Zentrum fuer Luft- und Raumfahrt; DLR) 'Mole' fully automatically hammered its way into the Martian subsurface for the first time. In a first step, it penetrated to a depth between 18 and 50 centimetres into the Martian soil with 4,000 hammer blows over a period of four hours. "On its way into the depths, the Mole seems to have hit a stone, tilted about 15 degrees and pushed it aside or past it," reports Tilman Spohn, principal investigator of the HP3 experiment. "The Mole then worked its way up against another stone at an advanced depth until the planned four-hour operating time of the first sequence expired." Tests on Earth showed that the rod-shaped penetrometer is able to push smaller stones to the side, which is very time-consuming. After a cooling-off period, the researchers will command a second four-hour hammering sequence. In the following weeks, with further intervals, they want to reach a target depth of three to five metres on sufficiently porous ground. The Mole will pull a five-metre-long tether equipped with temperature sensors into the Martian soil behind it. The cable is equipped with 14 temperature sensors in order to measure the temperature distribution with depth and its change with time after reaching the target depth and thus the heat flow from the interior of Mars.
Millimetre Precision with a Worm Gear A second spring absorbs the recoil. "You can imagine the Mars Mole functioning like a large nail that has a built-in hammer," says Torben Wippermann from the DLR Institute of Space Systems, explaining the technology.
Hammering, Cooling, Heating, Measuring "For this purpose, a piece of foil in the shell of the Mole is heated for several hours with a known electrical power," says DLR planetary researcher Matthias Grott. "The simultaneously measured increase in the temperature of the foil then gives us a measure of the thermal conductivity of the soil in its immediate surroundings." In addition, the radiometer mounted on the InSight lander measures the temperature of the Martian soil on the surface, which fluctuates from some degrees above zero degrees Celsius to almost -100 degrees Celsius. Later on, once the target depth has been reached, the data from the temperature and thermal conductivity measurements, along with the radiometer data, is received at the DLR control centre in Cologne, processed and then evaluated by scientists at the DLR Institute of Planetary Research.
Team selected by Canadian Space Agency to study Mars minerals London, Canada (SPX) Jan 17, 2019 In the coming years, new rovers will explore Mars with better scientific instruments, as capable as those that exist in labs here on Earth today. Roberta Flemming from Western University's Department of Earth Sciences and the Centre for Planetary Science and Exploration is leading a team of researchers to develop a compact instrument that could be deployed to analyze mineral and rock structures in place on the red planet's surface, wherever they are found. The concept study is funded by the Canadian Spa ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |