Subscribe free to our newsletters via your
. Mars Exploration News .




MARSDAILY
ISS research shows that hardy little space travelers could colonize Mars
by Staff Writers
Houston TX (SPX) May 05, 2014


The European Technology Exposure Facility (EuTEF) attached to the Columbus module of the International Space Station during orbital flight. Image courtesy DLR, Institute of Aerospace Medicine/Dr. Gerda Horneck.

In the movies, humans often fear invaders from Mars. These days, scientists are more concerned about invaders to Mars, in the form of micro-organisms from Earth. Three recent scientific papers examined the risks of interplanetary exchange of organisms using research from the International Space Station.

All three, Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space, Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes and Survival of Bacillus pumilus Spores for a Prolonged Period of Time in Real Space Conditions, have appeared in Astrobiology Journal.

Organisms hitching a ride on a spacecraft have the potential to contaminate other celestial bodies, making it difficult for scientists to determine whether a life form existed on another planet or was introduced there by explorers. So it's important to know what types of micro-organisms from Earth can survive on a spacecraft or landing vehicle.

Currently, spacecraft landing on Mars or other planets where life might exist must meet requirements for a maximum allowable level of microbial life, or bioburden. These acceptable levels were based on studies of how various life forms survive exposure to the rigors associated with space travel.

"If you are able to reduce the numbers to acceptable levels, a proxy for cleanliness, the assumption is that the life forms will not survive under harsh space conditions," explains Kasthuri J. Venkateswaran, a researcher with the Biotechnology and Planetary Protection Group at NASA's Jet Propulsion Laboratory and a co-author on all three papers.

That assumption may not hold up, though, as recent research has shown that some microbes are hardier than expected, and others may use various protective mechanisms to survive interplanetary flights.

Spore-forming bacteria are of particular concern because spores can withstand certain sterilization procedures and may best be able to survive the harsh environments of outer space or planetary surfaces. Spores of Bacillus pumilus SAFR-032 have shown especially high resistance to techniques used to clean spacecraft, such as ultraviolet (UV) radiation and peroxide treatment.

When researchers exposed this hardy organism to a simulated Mars environment that kills standard spores in 30 seconds, it survived 30 minutes. For one of the recent experiments, Bacillus pumilus SAFR-032 spores were exposed for 18 months on the European Technology Exposure Facility (EuTEF), a test facility mounted outside the space station.

"After testing exposure to the simulated Mars environment, we wanted to see what would happen in real space, and EuTEF gave us the chance," says Venkateswaran. "To our surprise, some of the spores survived for 18 months." These surviving spores had higher concentrations of proteins associated with UV radiation resistance and, in fact, showed elevated UV resistance when revived and re-exposed on Earth.

The findings also provide insight into how robust microbial communities are able to survive in extremely hostile regions on Earth and how these microbes are affected by radiation.

In another investigation, spores of Bacillus pumilus SAFR-032 and another spore-forming bacteria, Bacillus subtilis 168, were dried on pieces of spacecraft-quality aluminum and subjected for 1.5 years to the vacuum of space, cosmic and extraterrestrial solar radiation and temperature fluctuations on EuTEF. These samples also were subjected to a simulated Martian atmosphere using EuTEF.

Most of the organisms exposed to solar UV radiation in space and in the Mars spectrum were killed, but when UV rays were filtered out and samples were kept in the dark, about 50 percent or more of those subjected to other space- and Mars-like conditions survived. That makes it likely that spores could survive a trip on a spacecraft to Mars if they are sheltered against solar radiation, perhaps in a tiny pocket of the spacecraft surface or underneath a layer of other spores.

The third study placed rock-colonizing cellular organisms in the EuTEF facility for 1.5 years, further testing a theory of how organisms might move from one planet to another, known as lithopanspermia. In this scenario, rocks ejected from a planet by impact with, say, a meteor, carried organisms on their surface through space and then landed on another planet, bringing that life with them.

For this investigation, researchers selected organisms especially adapted to cope with the environmental extremes of their natural habitats on Earth, and found that some are also able to survive in the even more hostile environment of outer space.

Lithopanspermia would require thousands or even millions of years, much longer than the experiment's duration, but results provide the first evidence of the hardiness of these organisms in space and suggest the possibility that space-traveling rocks could carry life between planets.

Future exploration missions can use the results of these investigations to help find ways to minimize the risk of contaminating another planet. The findings also will help prevent scientists from incorrectly identifying an organism that hitchhiked on the exploring spacecraft as a native of the planet, when in fact it's an invader. That's a good thing, because no one wants to be responsible for an alien invasion of Mars.

.


Related Links
NASA/Johnson Space Center
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
Health risks of Mars mission would exceed NASA limits
Washington (AFP) April 02, 2014
Efforts to send humans to Mars would likely expose them to health risks beyond the limits of what NASA currently allows, an independent panel of medical experts said Wednesday. Therefore, any long-term or deep space missions - which are still decades off - need a special level of ethical scrutiny, said the report by the Institute of Medicine. "These types of missions will likely expose ... read more


MARSDAILY
Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

NASA Completes LADEE Mission with Planned Impact on Moon's Surface

Russia plans to get a foothold in the Moon

MARSDAILY
China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

MARSDAILY
NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Astronauts Prep for Spacewalk as Mission Managers Evaluate Busy Schedule

MARSDAILY
Dwarf planet 'Biden' identified in an unlikely region of our solar system

Planet X myth debunked

WISE Finds Thousands Of New Stars But No Planet X

New Horizons Reaches the Final 4 AU

MARSDAILY
Saturn returns to evening sky this weekend

Saturn's rings reveal how to make a moon

Saturn's hexagon: An amazing phenomenon

NASA Cassini Images May Reveal Birth of a Saturn Moon

MARSDAILY
Kazakhstan's First Earth Observation Satellite to Orbit

How Does Your Garden Glow? NASA's OCO-2 Seeks Answer

NASA-CNES Proceed on Surface Water and Ocean Mission

Seeing the bedrock through the trees

MARSDAILY
Pioneering Mercury Astronauts Launched America's Future

NASA's Next Prototype Spacesuit has a Brand New Look, and it's All Thanks to You

Boeing Showcases Future Commercial Spacecraft Interior

NASA Invests in Hundreds of US Small Businesses to Enable Future Missions

MARSDAILY
Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.