Human Missions to Mars by Staff Writers for Launchspace Bethesda, MD (SPX) Nov 19, 2019
People visiting and living on Mars have been the subjects of science fiction stories, engineering studies and tourist proposals since Gustavus Pope's adventure story, "Journey to Mars" in 1894. Mission plans have included landing humans on Mars for exploration at a minimum, and with the possibility of sending settlers and terraforming the planet. Serious mission design activities have been ongoing for the past 70 years. The list of crewed mission plans is extensive. For example, scientific expeditions which involve small groups might visit Mars for a period of up to a year, and this might later lead to permanent colonies. Most recently, space agencies in the US, Europe and Asia have been developing comprehensive proposals that might lead to Martian visits sometime within the next two decades. Getting to Mars is not easy. Due to heliocentric orbital geometry and the physics of space flight, the energy needed to transfer from Earth to Mars is at its relative lowest levels at 26-month intervals. In other words, the launch window for a low-energy transfer to Mars opens every 26 months. To further complicate such missions, due to the eccentricity of Mars' orbit, the energy needed in the low-energy windows is not always the same, but varies on roughly a 15-year cycle. Thus, in the 20th century true minimums occurred in 1969, 1971, 1986 and 1988. The next very-low-energy launch window occurs in 2033. Low-energy heliocentric transfers from Earth to Mars are known as Hohmann transfers, which involve transit times of approximately 9 months. A minimum-energy return trip to Earth will require spending at least 500 days at Mars until an appropriate launch window opens. Mission symmetry would then dictate a travel time of about 9 months to return to Earth. Thus, a minimum energy round trip to Mars might require a total of about 35 months. It is possible to shorten the travel time between planets, but at significantly higher energy levels. Once the planet is reached the heliocentric transfer results in a very high approach speed. In order to land on Mars the spacecraft must decelerate either by using descent rockets or aerocapture techniques. In either case there must be a limit on the maximum force experienced by the crew. Scientific consensus indicates that the maximum allowable deceleration should be 5 times Earth's gravity, or 5 Gs. In addition to the Martian descent forces there are several other important physical challenges for humans:
+ Health threats from cosmic rays and other ionizing radiation In summary, human travel to and from Mars presents extreme challenges, complex technologies and extraordinary crews.
Trump marks Mars as next target, Moon 'not so exciting' Washington DC (Sputnik) Sep 23, 2019 US President Donald Trump on Friday praised the US space program's efforts to return astronauts to the moon by 2024 as "tremendous," yet outlined that the ultimate goal is Mars. "We're going to Mars," Trump told reporters after a White House meeting with Australia's Prime Minister Scott Morrison, marking Mars as a more exciting target than the moon. "We're stopping at the moon. The moon is actually a launching pad," Trump said. "That's why we're stopping at the moon. I said, 'Hey, we've done ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |