Halos discovered on Mars widen time frame for potential life by Staff Writers Los Alamos NM (SPX) May 31, 2017
Lighter-toned bedrock that surrounds fractures and comprises high concentrations of silica--called "halos"--has been found in Gale crater on Mars, indicating that the planet had liquid water much longer than previously believed. The new finding is reported in a paper published this week in Geophysical Research Letters, a journal of the American Geophysical Union. "The concentration of silica is very high at the centerlines of these halos," said Jens Frydenvang, a scientist at Los Alamos National Laboratory and the University of Copenhagen and lead author of the paper. "What we're seeing is that silica appears to have migrated between very old sedimentary bedrock and into younger overlying rocks. The goal of NASA's Curiosity rover mission has been to find out if Mars was ever habitable, and it has been very successful in showing that Gale crater once held a lake with water that we would even have been able to drink, but we still don't know how long this habitable environment endured. "What this finding tells us is that, even when the lake eventually evaporated, substantial amounts of groundwater were present for much longer than we previously thought--thus further expanding the window for when life might have existed on Mars." Whether this groundwater could have sustained life remains to be seen. But this new study buttresses recent findings by another Los Alamos scientist who found boron on Mars for the first time, which also indicates the potential for long-term habitable groundwater in the planet's past. The halos were analyzed by the rover's science payload, including the laser-shooting Chemistry and Camera (ChemCam) instrument, developed at Los Alamos National Laboratory in conjunction with the French space agency. Los Alamos' work on discovery-driven instruments like ChemCam stems from the Laboratory's experience building and operating more than 500 spacecraft instruments for national security. Curiosity has traveled more than 16 km over more than 1,700 sols (martian days) as it has traveled from the bottom of Gale crater part way up Mount Sharp in the center of the crater. Scientists are using all the data collected by ChemCam to put together a more complete picture of the geological history of Mars. The elevated silica in halos was found over approximately 20 to 30 meters in elevation near a rock-layer of ancient lake sediments that had a high silica content. "This tells us that the silica found in halos in younger rocks close by was likely remobilized from the old sedimentary rocks by water flowing through the fractures," said Frydenvang. Specifically, some of the rocks containing the halos were deposited by wind, likely as dunes. Such dunes would only exist after the lake had dried up. The presence of halos in rocks formed long after the lake dried out indicates that groundwater was still flowing within the rocks more recently than previously known.
Washington DC (SPX) May 19, 2017 An assessment of ancient drainage systems on Earth, Mars and Titan provides new insights into the topography-generating mechanisms on planetary bodies. The results illustrate the diverse geological processes affecting these bodies and their river networks. The movement of liquids such as water across a planetary surface forms rivers, signatures of which can be seen even long after the liqu ... read more Related Links Los Alamos National Laboratory Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |