Global analysis of submarine canyons may shed light on Martian landscapes by Staff Writers Stanford CA (SPX) Oct 10, 2019
Submarine canyons are a final frontier on planet Earth. There are thousands of these breathtaking geological features hidden within the depths of the ocean - yet scientists have more high-resolution imagery of the surface of Mars than of Earth's ocean floor. In an effort to shed light on these mysterious underwater features, Stanford researchers analyzed a collection of global images from an online repository of data from the ocean floor. They found that submarine canyons, which had been believed to form in ways similar to canyons on land, are instead fundamentally different from the land-based ravines that cut through vast stretches of our mountain ranges. The research was published online in Geology Sept. 25. "People would say, 'Oh well, there is no real difference between the two systems because at the end of the day, a river flowing versus a sediment gravity flow flowing - they're just going to do the same thing,'" said lead author Stephen Dobbs, a PhD candidate in geological sciences. "And it turns out that's not necessarily the case." The researchers analyzed multi-beam sonar data, which is collected by ships or small underwater vehicles just above the sea floor that send a sonar wave that is used to make maps of the seafloor. They acquired data for the study from the Global Multi-Resolution Topography synthesis, an open-source online repository. Dobbs said it was surprising to discover differences in the underwater and above-ground canyons, since on a map, formations 9,000 feet underwater can't be distinguished from canyons that are 9,000 feet above ground. "When you look from a purely qualitative sense - when you're just looking at a map - they look shockingly similar," said Dobbs. "We needed to use a quantitative method to actually test if these are different systems." The scientists found distinctions in the shapes and profiles of submarine canyons. On land, significant changes in canyon shape are often triggered by large flood events or landslides. Under water, researches hypothesize processes that form submarine canyons are periodic landslides from extreme steepness, seismic activity or large winter storms that funnel a lot of sediment from the shallow continental shelf. "This is all frontier - we don't actually know the answers to these things," Dobbs said. "Now we have all these measurements and we can more aptly look at what causes these formations."
From classroom to peer review Hilley said most people don't realize that sediment-laden water can erode the seafloor, never mind the fact that these flows have carved features deeper than the Grand Canyon right off the coast of Monterey. Because a lot of high-resolution imagery has been collected in recent years, the faculty members knew it should be possible to analyze a large sampling of the underwater features. "We used the seminar as a vehicle for answering whether or not the forms produced by these density flows share essential characteristics with those produced by rivers," Hilley said. "By asking these questions using real data, everyone learned how to formulate hypotheses and falsify them using sophisticated data analysis." While the project was a deviation from the graduate students' main research projects, Dobbs said he was pleased with how much the group accomplished in one year of pursuing this new topic.
Application to Mars? "These things have huge impacts on Earth systems and they are fundamentally not understood," Dobbs said. "We're just now able to actually measure them in a rigorous geomorphic sense and from that, we're able to make inferences about both how they form and how they influence our systems and our cycles." Dobbs plans to continue working with this data set in order to learn more about submarine canyon formation and behavior. "The exciting thing for me is that - while I love fieldwork - we can literally discover new things using very simple tools that are available to the public and open access," he said.
'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet Swindon UK (Sputnik) Sep 09, 2019 Volcanic Martian meteorites known as "nakhlites owe their name to El Nakhla in Egypt, where they first landed on Earth in 1911. Although they hold traces of impact of liquid water on the Martian surface the process which generated the fluids has been a mystery. A recent study entailing modern analysis of Martian meteorites has revealed stunning new details about how asteroid impacts facilitate the generation of temporary running water sources on the red planet. A paper titled "Boom boom pow: ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |