Europe's New Mars Mission Bringing NASA Radios Along by Staff Writers Pasadena CA (JPL) Mar 15, 2016
Two NASA radios aboard the European Space Agency's Mars mission are engineered to provide communication relay service for rovers and landers on Mars. ESA's ExoMars 2016 mission, combining the Trace Gas Orbiter (TGO) with the Schiaparelli landing demonstrator, began a seven-month journey to Mars. The twin Electra UHF (ultra-high frequency) radios from NASA are slated for a first in-flight test in about six weeks. "This partnership with Europe will strengthen and extend the existing infrastructure at the Red Planet for orbiters to support assets on the surface," said Phillip Barela of NASA's Jet Propulsion Laboratory, Pasadena, California, project manager for NASA's participation in ExoMars. NASA is on an ambitious journey to Mars that will include sending humans to the Red Planet. Current and future robotic spacecraft are leading the way and will prepare an infrastructure in advance for human missions. TGO's Electra radios use a design from JPL with special features for relaying data from a rover or stationary lander to an orbiter passing overhead. Relay of information from Mars-surface craft to Mars orbiters, then from Mars orbit to Earth, enables receiving much more data from the surface missions than would otherwise be possible. As an example of Electra capabilities, during a relay session between an Electra on the surface and one on an orbiter, the radios can maximize data volume by actively adjusting the data rate to be slower when the orbiter is near the horizon from the surface robot's perspective, faster when it is overhead. NASA's Curiosity Mars rover and Mars Reconnaissance Orbiter (MRO) already use Electra technology for relay of data. NASA's Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, in orbit since 2014, also carries an Electra radio. Due to improvements in the newest Electra radios and reduced interference levels compared with MRO, TGO's relay radios are expected to have a relay signal about twice as strong as MRO's. Compared to MAVEN's highly elongated orbit, TGO has a planned orbit similar to MRO's relay-favorable orbit at about 250 miles (400 kilometers) in altitude and nearly circular in shape. TGO's main X-band radio will use a dish antenna 87 inches (2.2 meters) in diameter to communicate with Earth-based antenna networks operated by ESA, NASA and Russia.
Related Links ExoMars 2016 Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |