Dust devils detected by seismometer could guide Mars mission by Staff Writers San Francisco CA (SPX) Nov 10, 2015
Buried in the shallow soft mud of a dry California lake bed, a seismometer was able to detect the tiny tilts of the ground as it was pulled up by passing dust devils. The experiment, described online November 10 in the Bulletin of the Seismological Society of America, is one of the first reports of a seismic signature from a dust devil. The study provides valuable information to researchers working on NASA's InSight mission to Mars, which will deposit a similar seismometer on the Red Planet. InSight's scientists hope the device will help them measure dust devils and their impact on the Martian atmosphere, according to Ralph Lorenz of Johns Hopkins University and colleagues. Scientists could also subtract the seismic noise created by dust devils from the seismometer's overall readings as they look for evidence of "marsquakes." Previous Mars missions such as the Mars Expedition Rover Spirit have filmed dust devils and the tracks they leave behind, where the devils scour away the planet's loose surface soil to reveal darker rock below. When these tracks accumulate over large regions, Lorenz said, they can cause changes in solar reflection "which may cause year-to-year variations in Mars' otherwise fairly uniform climate." "While on Earth dust devils are generally just an occasional nuisance and meteorological curiosity," Lorenz adds, "on Mars, they are major agents of dust-raising, which is a major factor in the climate, and in the operation of solar-powered vehicles on Mars." To learn more about the kinds of information InSight's seismometer might be able to collect, Lorenz and colleagues tested a seismometer on a desert playa near Goldstone Deep Space Communications Complex outside of Barstow, California. While the area was mostly free of vehicles and foot traffic, the scientists had to fence in their instrument array to protect it from wild donkeys and other wildlife that roamed the dry lake bed. The whirl of a dust devil occurs when ground heating creates a layer of hot, buoyant air that rises in plumes and begins to spin. These vortices are usually invisible, unless they pick up a cloaking layer of dust. In effect, the vortices are miniature low pressure systems, where air presses down on the ground with less weight inside the system compared to outside the system. Lorenz and colleagues deployed eight pressure loggers in a cross formation around the seismic station. Their goal was to see if they could match up instances of sharp, temporary pressure drops - which would indicate a passing dust devil - with any distinctive seismic signatures produced at the same time. The researchers were able to pair two dust devil pressure drops, 10 minutes apart, with seismic signatures. The seismometer proved to be sensitive enough to measure ground tilts of about 12 millionths of a degree caused by the dust devils, they found. A dust devil measuring about 10 meters in diameter can cause a drop in pressure equivalent to removing the weight of a small car from the ground surface, Lorenz noted. "So a large dust devil can cause a very significant change in the loading of the ground, and it is no surprise the ground deforms by a tiny amount," he said. "In essence, the dust devil sucks on the ground, pulling it upwards like a tablecloth pinched between thumb and forefinger. So the ground tilts away from the dust devil." Data collected by the seismometer can tell the researchers something about the direction of the dust devil's path, and the overall tilt signal also provides a picture of how elastic the ground is when it pulls up and settles again in the wake of the vortex. Elasticity is partially determined by the composition of rocks and dust that make up the ground, making it a useful tool in exploring the nature of Mars' near-surface layers.
Related Links Seismological Society of America Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |