Free Newsletters - Space - Defense - Environment - Energy
..
. Mars Exploration News .




MARSDAILY
Dry run for the 2020 Mars Mission
by Diana Lutz
St. Louis MO (SPX) Jul 01, 2013


Zoe sets out bravely in the Atacama. Like the Spirit and Opportunity rovers, which landed on Mars in 2004 Zoe is powered by solar panels. Because dust on the panels sometimes shuts down the rovers, the Curiosity rover, which reached Mars in 2012, is nuclear powered. In the Atacama, however, Zoe's panels can be cleaned if they should become dusty/

A film director looking for a location where a movie about Mars could be shot might consider the Atacama Desert, a strip of land on the coast of South America west of the Andes that is one of the harshest landscapes on the planet.

Due to the accidents of its geography, Atacama is the driest place on Earth. Some scientists believe there was no rain to speak of in part of the Atacama between 1570 and 1971. With little moisture in the air its salt lakes, sand dunes and lava flows broil or freeze and are blasted by ultraviolet radiation.

The conditions make the Atacama a splendid place to test instruments for future Mars missions.

"If you're practicing to find life on Mars, you don't want to go to a lush environment," says Alian Wang, PhD, research professor in the earth and planetary sciences at Washington University in St. Louis and a participant in NASA's ASTEP program to advance the technology and techniques used in planetary exploration.

This month, under the auspices of ASTEP, a Carnegie-Mellon University rover named Zoe set out into the Atacama. It is scheduled to spend the next four weeks traveling between waypoints with interesting geology and analyzing soil samples, both ones from the surface and ones dredged up from deep underground.

Subsurface samples pulled up by a meter-long drill and dumped into sample cups carried by a carousel are to be examined by a laser Raman spectrometer called the Mars Microbeam Raman Spectrometer, or MMRS.

Wang, the principle investigator for the spectrometer, also remotely operates it from her office in St. Louis. Her colleague Jie Wei, PhD, a research scientist in earth and planetary sciences, is traveling with the rover in the Atacama.

Wang says they are hoping Zoe will drive 40 to 50 kilometers and drill 10 to 15 boreholes.

Ready for prime time
The MMRS in its current compact, robust configuration is the culmination of 18 years of work at WUSTL and the Jet Propulsion Laboratory (JPL), led first by former WUSTL professor Larry Haskin, and now by Wang.

The MMRS was originally scheduled to ride on the Mars Exploration Rovers Spirit and Opportunity but after NASA lost two missions on approach to Mars - the Polar Lander and the Climate Orbiter - the MER rovers were downsized and offloaded. The Raman spectrometer, because it was the newest analytical instruments on the rovers, was a casualty of this process.

However, it is now the top candidate among instruments being considered for a 2020 mission to Mars and Wang has just received $3 million from NASA to make sure that it will be mission ready.

What's special about Raman? The spectrometer shines a laser on the sample and measures the energy of the photons the sample scatters back.

"Compared to other spectroscopies," Wang says, "Raman spectroscopy returns a very clear spectrum. So if you analyze a mixture (rock or soil) you see peaks for each mineral phase and organic molecule. You don't have to do complicated spectral processing to identify what's in the sample. So compared to other spectroscopies," Wang says, " its very diagnostic. "

Don't fail me now
The journeys in the Atacama are intended is to test the MMRS (and other instruments) until they fail. If a power system is going to fail on Mars, it will probably fail as well in the Atacama. And far better it should fail while still Earth-bound, than when it is 34 million miles away on the Martian surface.

Last year Wang was part of a team that tested instruments in the desert, without the rover, boring holes with hand-held equipment and operating the instruments manually. Wang was the PI for three of the instruments. "We found some problems we never expected," she says.

"The heat generated by cooling the Raman spectrometer's detector is dissipated by a cooling fan. When we came to the Atacama we were sometimes as high as 4,500 meters (14,800 feet) above sea level. The air is so thin at that altitude, the fan labored to get rid of the heat. That's one lesson we learned."

"Of course it will be different on Mars, "she says, " where the atmosphere is much thinner, but we learned where the instrument is vulnerable. "

On the other hand the laser in the Raman probe has to stay within a certain temperature range to operate properly. "But when we came to Laguna Lejia suddenly we weren't getting a strong enough signal," Wang says.

"We started checking and discovered the laser power was only a fifteenth of its normal value. It was so windy and cold the laser couldn't warm up. We had to run it longer before taking measurements to get a good signal. So we learned we had to work out a better temperature control for this laser."

Both discoveries were invaluable since they will allow the team to safeguard against these problems so that they don't occur on Mars.

It's alive!
After the Viking landers failed to find evidence of life on Mars in the late 1970s, a group of scientists took duplicate instruments into the Atacama, where they, too, failed to find evidence of life.

They did, however, encounter oxidizing soil conditions in the Atacama that destroyed organic molecules, a leading hypothesis for the apparent sterility of the Martian soils.

The Atacama soil tests done last year confirmed the presence of microorganisms in the desert soils. The presence of life in the Atacama does not of course guarantee its presence on Mars. But it does show that if there is subsurface life, the instruments will be able to detect it.

.


Related Links
Washington University in St. Louis
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





MARSDAILY
Mars had oxygen-rich atmosphere 4,000 million years ago
Oxford, UK (SPX) Jun 21, 2013
Differences between Martian meteorites and rocks examined by a NASA rover can be explained if Mars had an oxygen-rich atmosphere 4000 million years ago - well before the rise of atmospheric oxygen on Earth 2500m years ago. Scientists from Oxford University investigated the compositions of Martian meteorites found on Earth and data from NASA's 'Spirit' rover that examined surface rocks in t ... read more


MARSDAILY
Metamorphosis of Moon's Water Ice Explained

Scientists use gravity, topographic data to find unmapped moon craters

Australian team maps Moon's hidden craters

LADEE Arrives at Wallops for Moon Mission

MARSDAILY
China plans to launch Tiangong-2 space lab around 2015

Twilight for Tiangong

China calls for international cooperation in manned space program

Shenzhou 10 Returns Safely To Earth

MARSDAILY
Russian cosmonauts conduct space station tasks in spacewalk

Accelerating ISS Science With Upgraded Payload Operations Integration Center

Strange Flames on the ISS

Europe's space truck docks with ISS

MARSDAILY
New Horizons Team Sticking to Original Flight Plan at Pluto

Planning Accelerates For Pluto Encounter

'Vulcan' wins Pluto moon name vote

Public to vote on names for Pluto moons

MARSDAILY
Revealed - the mystery of the gigantic storm on Saturn

Cassini Finds Hints of Activity at Saturn Moon Dione

Wild Weather Could Be Ahead on Titan

Cassini Shapes First Global Topographic Map of Titan

MARSDAILY
Astrium's Cloud Services will support Western Australia Lands Department

Five Years of Stereo Imaging for NASA's TWINS

Vegetation as Seen by Suomi NPP

How did a third radiation belt appear in the Earth's upper atmosphere

MARSDAILY
Voyager 1 Explores Final Frontier Of Our Solar Bubble

NASA's Voyager 1 approaches outer limit of solar system

PayPal launches quest for intergalactic currency

NASA Bill Would 'End Reliance on Russia,' Nix Asteroid Capture Project

MARSDAILY
Astronomers Detect Three 'Super-Earths' in Nearby Star's Habitable Zone

Three planets in habitable zone of nearby star

1 star, 3 habitable planets

Gas-giant exoplanets seen clinging close to their parent stars




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement