Mars Exploration News  
Basic RNA Enzyme Research Promises Single-Molecule Biosensors

illustration only

Ann Abor MI (SPX) Jun 30, 2004
Research aimed at teasing apart the workings of RNA enzymes eventually may lead to ways of monitoring fat metabolism and might even assist in the search for signs of life on Mars, according to University of Michigan researcher Nils Walter.

His latest work was published online in the Proceedings of the National Academy of Sciences June 24.

Walter and associates at U-M and colleague Xiaowei Zhuang and associates at Harvard University, use techniques that allow them to study single molecules of RNA enzymes, also known as ribozymes.

Like the more familiar protein enzymes, RNA enzymes accelerate chemical reactions inside cells. Researchers want to learn how changes in ribozyme molecules affect their activity, both to better understand how evolution has shaped ribozymes to carry out their duties and to find ways of manipulating them for useful purposes.

In the recent research, Walter's group combined a technique called single-molecule fluorescence resonance energy transfer (FRET) with mathematical simulations to study a ribozyme involved in the replication of a tobacco-infecting virus.

Just as a protein enzyme is not a static structure, a ribozyme also changes shape, cycling back and forth between its compact, catalytically active form and its inactive, extended form.

Single-molecule FRET allowed the researchers to directly observe and measure how quickly the ribozyme switched forms and how these rates changed when various parts of the molecule were altered.

With the addition of mathematical simulations, the researchers also could investigate how changing parts of the ribozyme molecule affected its ability to catalyze chemical reactions. They were surprised to find that modifications they made anywhere on the molecule - even far from the site where the chemical reaction occurs - affected the rate of catalysis.

That's much like what is known to happen in protein enzymes, but until now there was no evidence that ribozymes behaved similarly, said Walter, a Dow Corning Assistant Professor of Chemistry.

"It's been known for a couple of years now that if you modify something on a protein enzyme that you think is pretty far away from the catalytic core - where the chemistry is actually happening - you see that the chemistry is affected directly," Walter said.

"This has led to the idea that there is a network of motions that make a protein enzyme act as a whole. We are proposing for the first time that this also happens with RNA enzymes."

Getting a grasp on how ribozymes work is important for answering fundamental questions of biology, Walter said, but the work may also lead to practical applications.

In particular, Walter and U-M collaborators Robert T. Kennedy, the Hobart H. Willard Professor of Chemistry and Pharmacology, and Jens-Christian Meiners, assistant professor of physics and assistant research scientist, Biophysics Research Division, are exploring their use as biosensors.

The idea is to selectively turn on a ribozyme molecule that catalyzes a reaction to generate a product that gives off a specific fluorescent signal only when a particular type of molecule binds.

"When you can do that on the single-molecule level, as we can do now, then you have the smallest possible biosensor," Walter said. Such sensors could be designed to detect important hormones like leptin, which is involved in fat metabolism.

With such a tool, "you could detect how a single cell makes leptin and ask how much the cell makes when the environment changes," he said.

In another project, funded by NASA, the researchers hope to develop a biosensor that could be sent to Mars to snoop around for amino acids or other signs that life might once have existed on the planet.

"These projects are still in the development stage," Walter said.

"But the technology we are developing here to ask some fundamental biological questions will ultimately help us learn how to design biological sensors with many potential applications."

Community
Email This Article
Comment On This Article

Related Links
University of Michigan
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spirit Heading To 'Home Plate'
Pasadena CA (JPL) Jan 09, 2006
Last week Spirit completed robotic-arm work on "El Dorado." The rover used all three of its spectrometers plus the microscopic imager for readings over the New Year's weekend.









  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • New Moon Shot Not So Costly
  • Armstrong Reflects On A New Visions For Space Exploration
  • Sunny lunar mountain good site for base
  • Lunar Convoys As An Option For A Return To The Moon

  • Airgas Helps Scaled Composites Reach New Heights
  • Boeing Showcases Net-Centric Operations Capabilities At Newest Node
  • Light This Candle
  • Purdue Yeast Makes Ethanol From Agricultural Waste More Effectively

  • SWAP To Determine Where The Sun And Ice Worlds Meet
  • Hubble Fails To Spot Suspected Sedna Moon
  • Life Beneath The Ice In The Outer Solar System?
  • Gravity Rules: The Nature of Planethood

  • Link Discovered Between Earth's Ocean Currents And Jupiter's Bands
  • Researchers Show Io Vaporizing Rock Gases Into Atmosphere
  • Expert Predicts Global Climate Change On Jupiter As It's Spots Disappear
  • Europa: Living World or Frozen Wasteland?



  • Winds Measured On Saturn's Moon Titan To Help Robot Lander
  • Cassini Ready To Burn Into Orbit About Saturn
  • Patching Titan's Surface View
  • Iowa U: Plasma Noise Burst Welcomes Cassini To Saturn

  • Virage Logic Introduces Ultra-Low-Power Semiconductor IP Platform
  • Computer Technology Developed By Hebrew University Can Save Lives
  • IST Debuts Its Stationary Plasma Thrusters On Loral-Built MBSAT Satellite
  • RaySat Secures $10 Million Financing For Phased-Array Antennas Production

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement