Mars Exploration News  
Bacterial Communities Found to Follow Water - Implications for Mars?

Vertical distribution of cyanobacterial community in desert crusts from the Colorado Plateau as seen through fluorescence laser confocal microscopy. Cyanobacteria are naturally fluorescent due to their photosynthetic pigments. This allows to observe them upon laser excitation without the background disturbance of mineral matrix and other microorganims. The top picture shows the cyanobacterial community at the surface with short, thick filaments of Scytonema sp. and round colonies of Nostoc sp. A different community, dominated by thin, long filaments of Microcoleus vaginatus can be found 0.3-0.5 mm deep into the crusts.

Flagstaff - Sept. 20, 2001
Miraculous things happen to the desert when it rains - everything changes from brown to green and organisms that have not been seen for months make a brief emergence from underground lairs.

In fact, even the desert's soil turns visibly green following the rare desert rain, as hidden filaments of photosynthesizing cyanobacteria suddenly hydrate. Lying a few millimeters deep, these primitive prokaryotes quickly glide upward, migrating en mass to the surface for an hour or so of light exposure until the dirt begins to dry. Then, just as suddenly, they return again to the subsurface, where they begin the long wait for the next rain.

The existence of such "cryptic" communities of microbes has long been known, and it has long been assumed that the organisms' behavior can be explained by common light-responsive behavior.

Now, a new finding by Arizona State University microbial ecologist Ferran Garcia-Pichel and Olivier Pringault of the Biological Oceanography Laboratory at the University of Bordeaux shows that phenomenon is actually more complicated, with significant implications for the behavior and ecology of other underground microbes. The research is reported in the September 27 issue of the journal Nature.

Observing several different species of soil crust-inhabiting cynobacteria, the team found that the bacteria's movements were affected by the presence or absence of water, not just light - the first time such behavior has ever been observed in bacteria.

According to Garcia-Pichel, the team was first intrigued by a "serendipitous" field observation. "What we discovered was that when one of these wetting events took place, the cyanobacteria came up to the surface of the soil

"But once the soil started drying out, the cyanobacteria returned to the subsurface though the light didn't change. Essentially nothing changed except the availability of water," he said.

Subsequently, the bacteria were moved to a laboratory setting and were tested under controlled lighting conditions, using microprobes to measure the relation of bacterial movement to water content in the soil surface. Test results showed clearly that the bacteria "tracked" the water.

"These migrations are really population migrations that occur in millimeter scale -- close to 100 percent of the population will come up to the surface," Garcia-Pichel noted. "Their tendency to track the water overwhelms their tendency to track the light. We've never seen this before."

Water, Garcia-Pichel hypothesizes, is critical to the bacteria not just for metabolism, but also for movement. "They go down because by tracking the water, they protect themselves. They will get dry eventually, and when they get dry they can't move. At the surface they would be more subject to hazardous conditions."

Garcia-Pichel points out that the finding may have large implications for investigating the ecology of the still poorly understood bacterial species that live deep beneath the earth's surface.

"Once traits like this are found, they're usually not restricted to one organism. We've seen this in a variety of cyanobacteria. If this really a widespread ability of bacteria, it also has implications on how we understand the bacterial communities in the deep subsurface. Bacterial communities may be following water in the subsurface over large distances," he said.

Similarly, there are implications for locating life in another extreme environment - Mars. Though cyanobacteria are among the most primitive living things, they have developed sophisticated skills for dealing with an environment where water is both scarce and transitory.

"Desert soils are one of the earthly ecosystems that may have some significance on Mars. If Mars had some water in the past, then these desiccation-resistant environments are probably going to be the last to have existed there. This is one of the most likely ecosystems to have left an imprint that we can find some evidence for," Garcia-Pichel said.

"'Follow the water' has become a productive shorthand for expressing the scientific directions of our exploration of Mars, and beyond," said Rose Grymes, Associate Director of the NASA Astrobiology Institute, of which Arizona State University is a member.

"This fascinating research contributes directly to our understanding of how living systems adapt to and impact the planetary environment, and how they leave their signature; even in places that appear highly inhospitable."

Community
Email This Article
Comment On This Article

Related Links
Arizona State University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spirit Heading To 'Home Plate'
Pasadena CA (JPL) Jan 09, 2006
Last week Spirit completed robotic-arm work on "El Dorado." The rover used all three of its spectrometers plus the microscopic imager for readings over the New Year's weekend.











  • NASA Seeks Berth On India's Moon Mission

  • Russian Course Program Will Find If You Have The Right Stuff
  • Russian Deputy PM Backs Private Space Station Project
  • Discovery Set For 100th Shuttle Mission
  • Body Clock Hurts Space Travel Prospects









  • SAT Corporation Awarded Subcontract for Telstar 8 Communications Simulator
  • Device Could Make For Faster Internet, Better Communications
  • Constellations Spawn Debris Rings Around Earth
  • Can Photons Smash Through The Circuit Density Barrier

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement