Ancient Mars was warm with occasional rain, turning cold by Staff Writers Barcelona, Spain (SPX) Aug 20, 2019
Scientists have long known that water was abundant on ancient Mars, but there has been no consensus on whether liquid water was common, or whether it was largely frozen in ice. Was the temperature high enough to allow the water to flow? Did this happen over an extended period, or just occasionally? Was the surface a desert or frozen? Warm conditions make it much more likely that life would have developed independently on the surface of ancient Mars. Now a new comparison of patterns of mineral deposition on the red planet with similar depositions on Earth lends weight to the idea that early Mars had one or more long periods dominated by rainstorms and flowing water, with the water later freezing. Presenting the findings at the Goldschmidt Geochemistry Conference in Barcelona, Professor Briony Horgan (Purdue University) said, "We know there were periods when the surface of Mars was frozen; we know there were periods when water flowed freely. But we don't know exactly when these periods were, and how long they lasted. "We have never sent unmanned missions to areas of Mars which can show us these earliest rocks, so we need to use Earth-bound science to understand the geochemistry of what may have happened there. "Our study of weathering in radically different climate conditions such as the Oregon Cascades, Hawaii, Iceland, and other places on Earth, can show us how climate affects pattern of mineral deposition, like we see on Mars. "Here on Earth, we find silica deposition in glaciers which are characteristic of melting water. On Mars, we can identify similar silica deposits in younger areas, but we can also see older areas which are similar to deep soils from warm climates on Earth. This leads us to believe that on Mars 3 to 4 billion years ago, we had a general slow trend from warm to cold, with periods of thawing and freezing. "If this is so, it is important in the search for possible life on Mars. We know that the building blocks of life on Earth developed very soon after the Earth's formation, and that flowing water is essential for life's development. So evidence that we had early, flowing water on Mars, will increase the chances that simple life may have developed at around the same time as it did on Earth. We hope that the Mars 2020 mission will be able to look more closely at these minerals, and begin to answer exactly what conditions existed when Mars was still young." Analysis of the surface geology of Mars supports a trend from a warm to a cold climate, but the climate models themselves don't support this, due to the limited heat arriving from the young Sun. "If our findings are correct, then we need to keep working on the Mars climate models, possibly to include some chemical or geological, or other process which might have warmed the young planet," said Horgan. The research team compared Earth data to Martian minerals detected using the NASA CRISM spectrometer, currently orbiting Mars, which can remotely identify surface chemicals where water once existed. They also took data from the Mars Curiosity Rover. Professor Horgan is a co-investigator on the Mars 2020 mission, due to be launched in July 2020 and to begin to explore the Jezero Crater in February 2021. Commenting, Professor Scott McLennan (Stony Brook University) said, "What is especially exciting about this work is that it used well understood Earth based geological processes from regions that are good analogs for Mars. The results not only make sense from the perspective of developing climate evolution models for Mars but also demonstrated a possible mechanism for forming the most interesting and perplexing and non-crystalline components that have been found in all of the samples analysed so far by the Curiosity rover."
Research Report: "Was Ancient Mars Warm and Wet or Cold and Icy? Mineral Signatures of Climate in Rover, Orbiter, and Terrestrial Analog Studies,"
NASA's Curiosity Mars Rover Finds a Clay Cache Pasadena CA (JPL) May 30, 2019 NASA's Curiosity rover has confirmed that the region on Mars it's exploring, called the "clay-bearing unit," is well deserving of its name. Two samples the rover recently drilled at rock targets called "Aberlady" and "Kilmarie" have revealed the highest amounts of clay minerals ever found during the mission. Both drill targets appear in a new selfie taken by the rover on May 12, 2019, the 2,405th Martian day, or sol, of the mission. This clay-enriched region, located on the side of lower Mou ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |